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This note summarizes some results for the discrete choice model with random utility,
developed by McFadden (1973) and Rust (1987). Some parts of the derivation follow
the web appendix of Artug et al. (2010). Similar results as (a subset of) Result 3
appear in Iskhakov et al. (2017).

Result 1 below is the standard Multinomial Logit result, although most of the
current applications seem to focus on the case with ¢ = 1. Result 2 is an extension of
the standard result that tends to focus on the 0 = 1 case. Result 3 shows, intuitively,
that the outcome with random utility converges to the outcome without the taste
shocks as the variance of the shocks goes to zero. This result is convenient because it
means that, with a small value of o, we can have “smooth” expression of V (i.e. the
expression that doesn’t involve “kinks” with respect to state variables that influence
{V;}, associated with the max operator) which is still close to max{Vi, V5, ..., V,;}. The
Result 3 also provides a natural tie-breaking rule when there are multiple options that

provides the max.

1 Setting

Consider a the choice of n alternatives:
V = E.[max{V; + &1, Vo + €2, ..., Vi, + &, }]-

Here, V; is the utility from alternative ¢. The random variable ¢; is mean zero and i.i.d.
across 4. Assume that ¢; follows type-I extreme value (Gumbel) distribution. The
expectation E.[] is taken for the vector € = {e1,¢9,...,,}. The distribution function
is given by
&;
F(g;) = exp <— exp <—— - 7)) :
o
where v = 0.5772... is Euler’s constant. o > 0 is the scale parameter, and the variance
of the distribution is increasing in o. The density function is
1 E; &
f(ei) = —exp (—— — 7 —exp <—— - 7)) :
o o o
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2 Results
The following results hold.

Result 1: The probability that the option ¢ is chosen, p;, is

Vi
exp | —

o
E exp | —

o
k=1

Di

Result 2: The resulting expected utility is

v o (Se (%)),

Result 3: As ¢ — 0, the limiting outcome is that p; = 1 if V; > V}, for all k. In this
case, pr = 0 for all other k. When there are multiple options that yield the maximum

i, p; = 1/m for these options, where m is the number of ties. As ¢ — oo, p; — 1/n for
alli. As o — 0, V — max{V;, V3, ..., V., }.

3 Proofs

3.1 Proof of Result 1

The probability that ¢ is chosen can be computed from

pi = Pr[Vi+e >V, + e for all k]
= Prlex <V;+¢e —V for all k]
_ / Fe) T F(Vi+ 20 — Vides
0 ki
In the integral, Hk# F(V;+¢;—Vj) is the probability that, when ¢; is given, ¢ is below
the value of V; +¢; — V}, for all k # ¢. Multiplying the density for corresponding ¢; and

integrating over all possible €; provides the probability that the option ¢ is chosen.



Let z; = ¢;/0 + . Then
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Let

P = /00 exp [—x; —exp (—(x; — \;))] dx;

= exp(-A) | exp (= A) — exp (~(as — A
= exp(—\i) /_Z exp [~y — exp (—yi)] dy;.
Note that J
ay P (—exp (—ui)) = exp (—y; — exp (—¥i)) -



Thus 00
pi = exp(— z)/ exp (—yi — exp (—¥i)) dy;

A
= exp(—X\;) [exp (—exp (—u:))] "
= A

3.2 Proof of Result 2

From the definition of V,

V = Z_;/_C:(VZ + &) f (&) HF(V; +&; — Vi)de;.

ki

With the same transformation as above (and noting that ¢; = o(z; — 7)),

VvV = Zl /_(:(VZ +o(x; — 7)) exp [—x; —exp (—(x; — \))] dx;

= Z [(VZ — o) exp(—XN;) + 0’/ xiexp [—x; —exp (—(x; — \i))] dz; | .

=1 —o©

Note that

/00 xiexp [—x; — exp (—(z; — \i))] d;

= exp(—Ai) [T, wiexp [=(xi — Ai) — exp (= (z; — \y))] d;

= exp(—X\;) ffooo(xl — i) exp[—(x; — ;) —exp (—(z; — \;))] d;
+exp(—N\;) ffooo i exp [—(z; — N;) —exp (—(z; — \))] da;

= yexp(—X;) + A exp(—X\;)

holds. Here, I used the fact that (Patel et al. (1976, p.35))

/ y; exp [—y; —exp (—y;)] dy; = v

—00

(Once again, here y; = x; — \;).



Thus

n

Vo= > [(Vi—oy)exp(—Ai) + oy + Ai) exp(—\)]

i=1
n

= > (Vi+ o) exp(—).

i=1

From the expression of \; in (1),

Therefore

- (e (2)) o 2)
ol (S (7)) -
— olog (;exp (?)) v,
(

3.3 Proof of Result 3

From the expression of p;,

v,
exp | —
g
> e |
g
k=1
1

1+Zexp (Vk;Vi)
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As o — 0, (i) if Vi <V, for all k # 4, p; — 1; (ii) if V; > V; for some k # i, p; — oc;
and (iii) if V, = V; for some k # i (and there are m — 1 such k) and Vj, < V; for the
rest of k # 1, p; = 1/m. As 0 — 00, exp (@) — 1 for all k£ and thus p; — 1/n.



From the expression of V,

o 1%
V = olog Zexp (—k)
k=1 g
n Vk
= olog Zexp(;) -Vi+V
k=1
- Vi Vi
= ol — —ol — Vi
o log ;exp(a) aog(exp(a))~l—
= olog ;exp(vk;‘/;)>+‘/;
= olog 1—|—Zexp<vk_v;)>+vi
ki g

where V; is chosen as max{V}, Vs, ..., V,,}. The first term converges to zero as ¢ — 0.
Thus V — V..
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