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1 Introduction

The most distinctive property of the labor market, compared to other markets of goods and

services, is that the objects traded in the market are highly heterogeneous. The nature of

labor services can be markedly different depending on worker, job, and match characteristics.

A large literature in modern macroeconomics treats unemployment as an outcome of market

frictions stemming from this heterogeneity—it is difficult to find a right person for a particular

job. A popular search-and-matching model of unemployment, often called the Diamond-

Mortensen-Pissarides (DMP) model, typically treats this heterogeneity in a reduced-form

manner, assuming that these frictions can be represented by a black box referred to as the

aggregate matching function. In the commonly-used version of the model, such as Pissarides

(1985) and Shimer (2005), jobs and workers are homogeneous outside the matching function.

Extensions of the standard DMP model, such as the models that analyze endogenous

job destruction and the models that analyze job-to-job transitions, often explicitly incorpo-

rate heterogeneity. However, they mostly consider only ex post heterogeneity; that is, they

typically assume that a random match-specific productivity is realized after the match is

formed.1 In this paper, I instead focus on ex ante heterogeneity. In particular, I analyze

a setting where jobs are heterogeneous, while abstracting from heterogeneity on the worker

side. Jobs have different characteristics at the time a vacancy is created, that is, before the

match is formed. I assume that the influences across different types of vacancies may be lim-

ited. Thus, different vacancies can operate in different labor markets, although each vacancy

can potentially match with any of the unemployed workers.

In the model, jobs can be different across many dimensions: productivity, recruiting

costs, worker’s bargaining power, and job stability. The main goal of this paper is to develop

theoretical intuitions; therefore, the model is fairly stylized. The different ‘types’ of jobs in the

model are open to many possible interpretations, and thus the model analysis can be applied

to many different contexts. For example, these different job types can represent permanent

versus temporary contracts, full-time versus part-time jobs, jobs in different sectors, different

occupations, or jobs in large firms versus small firms. What is important here is that similar

workers can work in different types of jobs; thus the characteristics of all jobs that can

potentially match with a worker affect her outside options.

The present paper asks two questions. First, how does the existence of heterogeneous

jobs affect the efficiency property of the market equilibrium? Second, how does the economy

respond to aggregate and type-specific productivity shocks?

For the first question, I provide a generalized version of the Hosios (1990)-type condition

that guarantees the social efficiency of the equilibrium outcome. It calls for the bargaining

power of the workers for different types of jobs to be related to various factors. One important

component in the condition is how each type of vacancy imposes externalities to other (and

its own) types of vacancies in the matching process.

For the second question, focusing on the situation where the markets are perfectly seg-

1See Pissarides (2000) for a textbook treatment.
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mented, I show that positive productivity shocks to one type of jobs have negative effects

on the openings of all other types of jobs. The intuition is simple: a positive productiv-

ity shock to one type of jobs increases the outside options of all workers and thus pushes

up wages. Higher wages reduce the firms’ incentive to create new jobs. The quantitative

exercise suggests that this effect can be sizable.

This paper is related to several strands of literature. The most closely related is the

literature that analyzes the efficiency of the equilibrium in a DMP-style model with hetero-

geneous jobs. The existing work includes Bertola and Caballero (1994), Acemoglu (2001),

Davis (2001), and Ljungqvist and Sargent (2012, Section 28.4). Compared to this literature,

the result in Section 2 (Proposition 2) is more general than any existing results that I am

aware of. This strand of work does not consider the propagation of shocks.

Another related literature includes the recent papers on heterogeneous firms with match-

ing frictions. Elsby and Michaels (2013) build a model of firm dynamics with DMP-style

labor market frictions. They also analyze business cycles. Compared to their model, the

model of this paper is closer to the original DMP model and is substantially more tractable;

thus, this paper has an advantage that the mechanism is more transparent. They also em-

phasize the volatility of labor market reacting to aggregate shocks, and the mechanism that I

highlight is likely to be at work in their model as well. Kaas and Kircher (2015) and Lise and

Robin (2017) also analyze frictional labor market models with heterogeneous firms, while the

settings of these papers are substantially different from the setting of this paper; the former

looks at a model of directed search and the latter features a model of sorting where workers

have no bargaining power when they move from unemployment.

The third strand of related literature is the papers that emphasize heterogeneous workers.

Recent examples are Bils et al. (2012) and Mueller (2017). The current paper complements

this literature by focusing on the other side of the labor market. For this paper’s model,

it is important that the same worker can potentially be matched to different types of jobs.

Most significantly, it means that different jobs can affect the workers’ outside options and

consequently what happens to other jobs can affect wages even when the labor market is

segmented on the vacancy side.

This paper is organized as follows. Section 2 sets up the continuous-time version of the

model and characterizes the steady-state equilibrium analytically. Two results are estab-

lished: comparative steady state and efficiency result. Section 3 builds the discrete-time

version of the model and solves it quantitatively. Here, the focus is on the response of the

labor market to productivity shocks. Section 4 concludes.

2 The continuous-time model

I consider a simple extension of the basic continuous-time DMP framework. Each consumer

is infinitely-lived and supplies one unit of labor inelastically. A consumer is employed at a

firm or unemployed. I normalize the total population of the consumers to one. A consumer
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maximizes the utility

U = E0

[∫ ∞
0

e−rtc(t)dt

]
,

where E0[·] denotes the expectations taken at time 0, r > 0 is the discount rate, and c(t) is

the consumption at time t. A consumer is either employed or unemployed at each point in

time. Given that the consumers are indifferent about the timing of consumption when the

interest rate is also r (which is the case in equilibrium), I assume that c(t) is equal to the

wage income when the consumer works and it is equal to the home production value when

the consumer is unemployed.2 Denote the flow value of the home production by h.

There are N different types of jobs. Types are indexed by i. The number of job vacancies

for type i jobs is denoted by vi(t). Let u(t) be the mass of unemployed workers (which is the

same as the unemployment rate). Denote the mass of employment in type-i jobs as ni(t).

Then ∑
i

ni(t) + u(t) = 1 (1)

always holds. The labor market tightness for type-i jobs is denoted as θi(t) ≡ vi(t)/u(t).

Note that the denominator is u(t): this expression reflects an underlying assumption that a

worker can apply for all types of jobs simultaneously. The vector of all θi(t) is represented

by θ(t). I assume that the Poisson rate that a type-i vacancy finds a worker is a function of

θ(t), and express the dependence by the function qi(θ(t)).

The total number of type-i matches is vi(t)qi(θ(t)), and the economy-wide total number

of matches is
∑

i v
i(t)qi(θ(t)). The matching process is entirely random. Thus, the Poisson

rate with which a worker finding a type-i job is θi(t)qi(θ(t)). I assume that a match is

separated at a Poisson rate σi.

This formulation nests several important special cases. As an example, suppose that all

jobs are posted in different markets, while the workers can simultaneously visit any market.

In particular, let M i(u, vi) be the matching function in the market for type i and the matching

function exhibits constant-returns to scale. Then it is straightforward to show that

qi(θ) = M i

(
1

θi
, 1

)
(2)

and

θiqi(θ) = θiM i

(
1

θi
, 1

)
.

Below, I call this case perfect segmentation case. Here, posting a type-i vacancy imposes no

2Since the firms are owned by the consumers and the firms generate profit (there is a positive aggregate
profit in the steady state), c(t) should in principle include asset income, even when there are no productive
capital stocks. I abstract from asset income here, as in the standard textbook treatment, because (as will
be clear later on) it does not affect the positive analysis of the equilibrium outcome in the current context.
This is because what matters for the equilibrium is the difference of values between being employed and being
unemployed. This will no longer be the case if the consumer’s utility is not linear and the asset market is not
complete. See Krusell et al. (2010) for such an analysis.
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direct externalities on the markets of other types of jobs. For example, an increase in the

number of vacancies by a construction firm may reduce the probability of another construction

firm finding a worker, but it would not affect the worker-finding probability of a retail firm

(although a worker can be matched with a construction firm or a retail firm with a random

probability).

For another example, suppose that there is only one labor market in the economy with

a matching function: M
(
u,
∑

k v
k
)
. In this case, all vacancies are pooled in one market and

interact with each other. In this case,

qi(θ) = M

(
1∑
k θ

k
, 1

)
(3)

and

θiqi(θ) = θiM

(
1∑
k θ

k
, 1

)
.

With this formulation, ∂qi(θ)/∂vj < 0 for j 6= i and therefore a type j vacancy imposes a

negative externality on the matching probability of the firms with different types of jobs. I

call this case perfect pooling. The above two extreme examples correspond to formulations

that have been considered in the existing literature.3

2.1 Worker flows and the steady-state stocks

Under the above assumptions, ni(t) follows the differential equation

ṅi(t) = θi(t)qi(θ(t))u(t)− σini(t), (4)

for i = 1, .., N (where ṅi(t) denotes dni(t)/dt) and u(t) follows

u̇(t) =
∑
i

σini(t)−

(∑
i

θi(t)qi(θ(t))

)
u(t).

In the steady state (where I omit the time notation), ṅi(t) = u̇(t) = 0 for all i. Thus,

from (4), ni = θiqi(θ)u/σi. From this and (1), the steady-state unemployment rate is

u =
1

1 +
∑

i(θ
iqi(θ)/σi)

. (5)

2.2 The steady-state equilibrium

This section focuses on the steady-state equilibrium. A type-i match (that is, a match of

a consumer and a type-i job) produces a flow value of pi. I assume that pi > h, and pi is

3See Bertola and Caballero (1994), Acemoglu (2001), Davis (2001), and Ljungqvist and Sargent (2012,
Section 28.4).
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sufficiently large for all i so that no match has an incentive to voluntarily separate.4

Denoting the value of a type-i job by J i, the Hamilton-Jacobi-Bellman (HJB) equation

for a type-i job that is matched with a worker is

rJ i = pi − wi − σi(J i − V i),

where wi is the wage of type-i job and V i is the value of a type-i vacancy. A type-i vacancy’s

value satisfies

rV i = −κi + qi(θ)(J i − V i).

where κi is the cost of posting a type-i vacancy. On the consumer side, the value of a

consumer working at a type-i job, W i, satisfies

rW i = wi − σi(W i − U),

where U is the value of unemployment. An unemployed consumer’s HJB equation is

rU = h+
∑
i

θiqi(θ)(W i − U).

I assume free entry into vacancy posting. That is, firms post vacancies until the present

value of a vacancy is driven down to zero (here, I only consider the situation where vi > 0

for all i in equilibrium):

V i = 0. (6)

Wages are determined by the generalized Nash bargaining solution, with the bargaining

power to the worker denoted by γi ∈ (0, 1). As in the standard textbook model,

γi(J i − V i) = (1− γi)(W i − U)

holds as a result. Let the total surplus of a matched type-i job be

Si ≡ J i − V i +W i − U =
J i − V i

1− γi
=
W i − U
γi

.

The equilibrium can be summarized as the job-creation (JC) condition:

(r + σi)Si = pi − h−
∑
j

θjqj(θ)γjSj . (7)

The interpretation is simple. The left-hand side is the flow return from a matched type-i

job. The right-hand side shows that the return has two components: the first component is

4When there is only one type of job, pi > h is sufficient to ensure that there is no endogenous separation.
It is no longer the case when jobs are heterogeneous. Because the value of unemployment includes the option
value of finding a good job, the value of a type-i match can become lower than the value of unemployment
(and vacancy) even when pi > h.

6



the flow (net) benefit from the match in terms of production. The second component is the

opportunity cost of moving a worker from unemployment to employment; by being matched,

the workers loses an ability to search for a new job. From the free-entry condition (6), Si

satisfies

Si =
κi

(1− γi)qi(θ)
. (8)

Putting (7) and (8) together,

pi − h− (r + σi)κi

(1− γi)qi(θ)
−
∑
j

θjγjκj

1− γj
= 0 (9)

has to hold for all i. Thus, (9) defines a system of N equations with N unknowns that pins

down the equilibrium values of θi for all i.

In the case of perfect segmentation (that is, no externalities across markets), it is fairly

straightforward to show the following comparative static result.

Proposition 1 Suppose that there are no externalities across the markets, that is, qi(θ)

depends only on θi. Let p̂i and θ̂i be the log deviation of the variables pi and θi. Suppose that

p̂i > 0 and p̂j = 0 for all j 6= i. Then θ̂i > 0 and θ̂j < 0 for a small value of p̂i.

Proof. See Appendix A.

2.3 Efficiency

In this section, I compare the equilibrium outcome to the socially efficient outcome. Here, the

concept of social efficiency is a “constrained efficiency”; the social planner must face the same

frictions as the private sector does. In this paper’s context, I consider a social planner who

faces the same labor-market frictions as the private sector. The social planner can specify the

number of vacancies that the firms post (and therefore indirectly specify the employment of

each type). Given the linear utility of consumers, the objective of a benevolent social planner

is to maximize the discounted sum of the total value added. The maximization problem of

the social planner is

max
{ni(t),θi(t)}

∫ ∞
0

e−rt

∑
i

pini(t) + h

(
1−

∑
i

ni(t)

)
−
∑
i

κiθi(t)

1−
∑
j

nj(t)


subject to

ṅi(t) = θi(t)qi(θ(t))

1−
∑
j

nj(t)

− σini(t). (10)
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Let the costate variable that is associated with the constraint (10) be λi(t). The present-value

Hamiltonian for this optimization problem is then

H(t) = e−rt

∑
i

pini(t) + h

(
1−

∑
i

ni(t)

)
−
∑
i

κiθi(t)

1−
∑
j

nj(t)


+
∑
i

λi(t)

θi(t)qi(θ(t))

1−
∑
j

nj(t)

− σini(t)
 .

The first-order condition for θi(t) is (after canceling out the common terms)

−e−rtκi + λi(t)
[
1− ηi(θ(t))

]
qi(θ(t)) +

∑
j 6=i

λj(t)θj(t)
∂qj(θ(t))

∂θi(t)
= 0,

where ηi(θ) ≡ −(∂qi(θ)/∂θi)θi/qi(θ) > 0 is the elasticity of qi(θ) with respect to θi. Defining

µi(t) ≡ ertλ(t) as the current value of the costate variable (µi(t) is constant in a steady state),

this can be rewritten as

−κi + µi(t)
[
1− ηi(θ(t))

]
qi(θ(t)) +

∑
j 6=i

µj(t)θj(t)
∂qj(θ(t))

∂θi(t)
= 0. (11)

The first-order condition for ni(t) is

e−rt

pi − h+
∑
j

κjθj(t)

−∑
j

λj(t)θj(t)qj(θ(t))− λi(t)σi + λ̇i(t) = 0,

which can be rewritten as

pi − h+
∑
j

κjθj(t)−
∑
j

µj(t)θj(t)qj(θ(t))− µi(t)(r + σi) + µ̇i(t) = 0. (12)

Comparing (7) with the steady-state version of (12),

(r + σi)µi = pi − h−
∑
j

θj(qj(θ)µj − κj), (13)

a social efficiency can be achieved when two conditions are met:

µi = Si (14)

and ∑
j

θj(qj(θ)µj − κj) =
∑
j

θjqj(θ)γjSj . (15)

The first condition is straightforward to interpret. The multiplier µi in (13) is the social value
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of a match for the social planner, and Sj is the present value of surplus from a match in

equilibrium. Thus, the first condition can be interpreted as the social return being equal to

the private return for each match. The second condition is the social value versus the private

value of having an unemployed worker in the economy. Because an unemployed worker can

be transformed into an employed worker (who has the social value of µj) with probability

qj(θ) with cost κj , the left-hand side can be viewed as a social value of an unemployed worker

for a social planner. The right-hand side is the opportunity cost of moving an unemployed

worker to employment in equilibrium, that is, the private value of unemployment. In the

left-hand side, the net value (qj(θ)µj − κj) is multiplied by θj and summed across all types

of jobs. This is because the social value (qj(θ)µj−κj) is measured in terms of vacancies, and

thus here it must be transformed to the value per each unemployed worker. Note that (15)

is always satisfied when (14) holds, because of the expression of Si in (8). Thus, in terms of

efficiency, all I need to check is the condition (14). Using (8) and (11), the equation (14) can

easily be evaluated.

The equation (11) shows that the usual Hosios (1990) condition does not guarantee the

efficiency when there are externalities across different types of vacancies in the matching

process. In fact, the following condition can be derived:

Proposition 2 In the steady state, the market equilibrium is socially efficient if

γi =
∑
j

εji
κj/(1− γj)
κi/(1− γi)

(16)

for all i, where

εji ≡ −
θj(∂qj(θ)/∂θi)

qj(θ)
.

Proof. See Appendix A.

This is a generalized version of Hosios (1990) condition. Here, εji indicates the magnitude of

the externality that a type-i vacancy imposes on the type-j firms. When this is negative, the

creation of a type-i vacancy should be discouraged by increasing γi. Note that (16) will be

reduced to γi = εii when there is only one market i.

For a special case, which corresponds to the perfect segmentation case (2), it is straight-

forward to check that the following holds.

Corollary 1 Suppose that there are no externalities across types, that is, ∂qj(θ)/∂θi = 0

for i 6= j. Then, in the steady state, the market equilibrium is socially efficient if γi = ηi(θ)

for all i.

This special case is also shown in Ljungqvist and Sargent’s (2012, Section 28.4) textbook.5

Another notable special case of Proposition 2 is when all types are pooled in the single

market, as in above Equation (3).

5Also see Davis (2001) for an earlier result in a static framework.
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Corollary 2 Suppose that all types are pooled in a single market, so that qi(θ) can be ex-

pressed as, using a function q(·),

qi(θ) = q

(∑
k

θk

)
.

In the steady state, the market equilibrium is socially efficient if

γi = η(θ)

∑
j [κ

j/(1− γj)][θj/(
∑

k θ
k)]

κi/(1− γi)
(17)

for all i, where

η(θ) ≡ −
(
∑

k θ
k)(∂q

(∑
k θ

k
)
/∂(
∑

k θ
k))

q (
∑

k θ
k)

is the elasticity of q
(∑

k θ
k
)

with respect to
∑

k θ
k.

This directly follows from Proposition 2. The condition (17) modifies the single-type Hosios

condition (γi = η(θ)) with a term that represents relative value of κi/(1 − γi) compared to

its weighted average across i. If κi/(1−γi) is larger than its average, γj must be below η(θ).

In other words, a job type with a large κi/(1 − γi) is under-produced when the single-type

condition γi = η(θ) is satisfied.

A further implication of Corollary 2 is that the social efficiency cannot be achieved with

a common value of γi across types when κi is heterogeneous. It is straightforward to see this

fact; here, the condition (17) becomes

γ = η(θ)

∑
j κ

j [θj/(
∑

k θ
k)]

κi

and this equality cannot be satisfied for multiple values of κi (because everything else is

common across i). A job with a large κi is relatively under-produced compared to a job

with a small κj . Closely related results are shown by Acemoglu (2001), Davis (2001), and

Ljungqvist and Sargent (2012, Section 28.4) for this special case.6

3 The discrete-time model and the business cycle

Now I reformulate the same problem with discrete time and with productivity shocks. I

consider business cycles driven by the shocks to productivities of different types of jobs. In

this section, I will use a subscript to indicate a time period.

6Extending Davis (2001), Ljungqvist and Sargent (2012, Section 28.4) show that the total number of jobs
in the perfect pooling case is efficient if γi = η(θ) holds for all i.
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3.1 Model equations

The discrete-time version of (4) is

nit+1 = θitq(θt)ut + (1− σi)nit. (18)

For unemployment,

ut+1 =
∑
i

σinit +

(
1−

∑
i

θitq
i(θt)

)
ut (19)

governs the dynamics. The expression for the steady-state unemployment rate is the same

as the continuous-time case shown in (5).

Denoting the state of the economy at time t as Xt, the Bellman equations are

J i(Xt) = pit − w(Xt) + βE[(1− σi)J i(Xt+1) + σiV i(Xt+1)]

for a filled job of type i,

V i(Xt) = −κi + βE[qi(θt)J
i(Xt+1) + (1− qi(θt))V i(Xt+1)]

for a vacant job of type i,

W i(Xt) = wi(Xt) + βE[(1− σi)W i(Xt+1) + σiU(Xt+1)]

for a worker who is employed in a type-i job, and

U(Xt) = h+ βE

[∑
i

θitq
i(θt)W

i(Xt+1) +

(
1−

∑
i

θitq
i(θt)

)
U(Xt+1)

]

for an unemployed worker. Most of the notations are analogous to the earlier continuous-time

model. The values of the jobs and workers are similarly denoted—J i(Xt) is the value of a

type-i job; V i(Xt) is the value of a type-i vacancy; W i(Xt) is a value of a worker with type-i

job; and U(Xt) is the value of an unemployed worker. The discount factor is represented by

β ∈ (0, 1).

Once again, I assume free entry to vacancy posting

V i(Xt) = 0

and the generalized Nash bargaining for wages, which results in

γi(J i(Xt)− V i(Xt)) = (1− γi)(W i(Xt)− U(Xt)).
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After rearranging, the above equations can be summarized by

κi

1− γi
= βqi(θt)Et

pit − h+
(1− σi − γiθit+1q

i(θt+1))κ
i

(1− γi)qi(θt+1)
−
∑
j 6=i

γjθjt+1κ
j

1− γj

 , (20)

where Et[·] represents time-t expectations.

3.2 Calibration and computation

Below I numerically solve the business cycle dynamics of the model. The goal of this exercise

is to gain theoretical insights. Given the lack of appropriate data, my calculation below will

be primarily illustrative. I assume that there are two types of jobs: type 1 and type 2.

A large part of the calibration is standard. One period is assumed to be one month

and β is set at 0.996. In the baseline specification, I treat the type-1 job and the type-2

job symmetrically. The separation probability is assumed to be σ1 = σ2 = 0.034, following

Shimer (2005). The bargaining power for the worker is γ1 = γ2 = 0.72, again following

Shimer (2005). Normalizing p̄1 = p̄2 = 1.0, the flow value of unemployment is set at 0.71 as

recommended by Hall and Milgrom (2008).

Without a good measure of the externalities across different type of jobs, here I simply

assume the perfect segregation, as in (2).7 The job matching technology is assumed to be

qi(θ) = χ(θi)−η, where η = 0.72 as in Shimer (2005). I target θ̄i = 1 as the steady state

value of θi. Following Shimer (2005), I target the job-finding probability of an unemployed

worker to be 0.49, which implies that χ = 0.49/2. The overall unemployment rate is 6.4% as

a result.

The steady-state equations pin down the values of κi. In the steady state, (20) becomes

(under the assumption of qi(θ) = χ(θi)−η with θ̄i = 1)

κi

1− γi
= βχ

[
p̄i − h+

(1− σi − γiχ)κi

(1− γi)χ
− γjκj

1− γj

]
,

for i, j = 1, 2. With the above calibration, κ1 = κ2 = 0.051.

The model can accommodate any Markov processes (and covariance structures) for pro-

ductivity shocks. Here, for simplicity, I assume that the log-deviation of productivities from

the steady-state value is identical across types (i.e., shocks are perfectly correlated across

types). Let p̂t be the log-deviation from the steady-state value for both p1t and p2t (I omit i

because I assume an identical process). I assume an AR(1) structure:

p̂t+1 = ρp̂t + εt+1,

where ρ ∈ (0, 1) and εt+1 follows a Normal distribution with mean zero and standard deviation

7In the case of perfect pooling as in (3), the response of vacancies to type-specific shocks is rather extreme.
For example, if there is a positive productivity shock only to type 1, type 2 vacancies completely shut down
even if the shock is arbitrarily small.
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β p̄i h χ η σi γi κi ρ σε
0.996 1.0 0.71 0.245 0.72 0.034 0.72 0.051 0.949 0.00645

Table 1: Baseline calibration

σε. Hagedorn and Manovskii (2008) calculate the HP-filtered labor productivity process in

quarterly frequency has a standard deviation of 0.013 and the autocorrelation of 0.765. With

Monte Carlo simulation, I find that the corresponding values (for monthly frequency) of ρ

and σε are 0.949 and 0.00645. Table 1 summarizes the baseline calibration.

The log-linearized solutions for θ̂it take the form

θ̂it = ψip̂it + φip̂jt . (21)

The coefficient ψi is the elasticity of type-i labor market tightness with respect to the shock

to the productivity of its own type. The other coefficient, φi, governs the reaction of the

type-i labor market tightness to the shock to type j 6= i. These coefficients can be derived

analytically. The solutions are detailed in Appendix B. Note that Proposition 1 suggests

that ψi > 0 and φi < 0, although here these coefficients represent the dynamic response

to shocks while Proposition 1 concerns the comparison of two steady states.8 Also note

that in deriving (21), the assumption that the shocks are perfectly correlated with the same

magnitude is not used. The only assumption that is necessary is that the shock for each type

has an AR(1) structure and the current value of the shock depends on its own past value

with persistence coefficient ρ. Therefore, the coefficients in (21) can also be interpreted as

responses to type-specific shocks (with potentially different realizations). For example, one

can think of an economy with only shocks to type-1 jobs by assuming that σε for type-2 shock

is zero.

The equation (21) summarizes the labor market reaction to productivity shocks. Once it

is obtained, the behavior of aggregate economy can be simulated using (18) and (19).

3.3 Results

Table 2 summarizes the values for ψi and φi in (21) for various specifications. The columns

with “total i” reports the sum of ψi and φi. This corresponds to the change of θi in response

to a 1% aggregate shock (i.e., identical, perfectly-correlated shocks to both types). In the

baseline specification, which is presented in the row (i) in Table 2, the reaction of θi to a 1%

aggregate productivity shock is about 3%; this is in line with the literature that characterizes

the standard model. Thus, introducing two segmented markets does not play a significant

role in amplification of shocks.

8See Mukoyama et al. (2018, Appendix B) for a similar characterization of several variations of the DMP
model, including the basic Pissarides (1985) model. Petrosky-Nadeau and Wasmer (2017) also derive a similar
characterization for the basic Pissarides (1985) model. One advantage of the direct characterization of the
responses to shocks, compared to the comparative steady-state analysis, is that one can see the effect of ρ.
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ψ1 φ1 total 1 ψ2 φ2 total 2
(i) Baseline 11.8 −8.6 3.2 11.8 −8.6 3.2
(ii) p̄1 = 1.01, p̄2 = 0.99 8.8 −6.3 2.5 18.1 −13.4 4.6
(iii) σ1 = 0.02, σ2 = 0.10 6.6 −4.0 2.6 23.0 −17.4 5.6
(iv) p̄1 = 1.01, p̄2 = 0.99; σ1 = 0.02, σ2 = 0.10 5.8 −3.5 2.4 49.7 −38.5 11.2

Table 2: Responses to shocks

u v v/u p

Standard Deviation 0.125 0.139 0.259 0.013
Quarterly Autocorrelation 0.870 0.904 0.896 0.765

u 1 −0.919 −0.977 −0.302
v — 1 0.982 0.460

Correlation Matrix v/u — — 1 0.393
p — — — 1

Table 3: US data: Hagedorn and Manovskii (2008)

u v v/u p

Standard Deviation 0.011 0.032 0.041 0.0130
Quarterly Autocorrelation 0.818 0.703 0.763 0.765

u 1 −0.851 −0.913 −0.814
v — 1 0.991 0.973

Correlation Matrix v/u — — 1 0.961
p — — — 1

Table 4: Simulated results for the baseline case

u v v/u p

Standard Deviation 0.020 0.071 0.089 0.0129
Quarterly Autocorrelation 0.789 0.719 0.763 0.764

u 1 −0.892 −0.922 −0.846
v — 1 0.995 0.969

Correlation Matrix v/u — — 1 0.959
p — — — 1

Table 5: Simulated result for case (iv) in Table 2

Table 4 presents the standard deviations, autocorrelations, and cross-correlations (all

aggregated to quarterly, logged and HP-filtered with the coefficient 1,600) from the baseline

model. Here, v and v/u are the total numbers in the aggregate economy, and p is the

(weighted) average of the labor productivity. Comparison of this table to the U.S. data in

Table 3, taken from Hagedorn and Manovskii (2008), confirms Shimer’s (2005) finding that
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the model generates labor market fluctuations that are too small compared to the data. This

issue is frequently referred to as “the labor market volatility puzzle” in the literature.9

Rows (ii) to (iv) in Table 2 introduce various heterogeneities in jobs. The case (ii)

introduces 2% difference in the average productivity between two types. This reduces the

reaction of type 1 vacancies while increasing the response of type 2 vacancies. The intuition

is in line with Hagedorn and Manovskii (2008) in the case of homogeneous jobs—because

the surplus from a type 2 match is now smaller, a small productivity shock induces a larger

swing in a firm’s profit in percentage terms.10 The surplus from a type 2 match is smaller for

two reasons: first, the lower value of p̄2 reduces the flow surplus from the match; and second,

the higher value of p̄1 implies that there is a higher option value for being unemployed. This

increases the outside option of the workers. The second channel would not be present if

workers are heterogeneous instead of jobs being so.

Case (iii) introduces a difference in separation probabilities: σ1 = 0.02 and σ2 = 0.10.

With this specification, the steady-state unemployment rate remains at 6.4%. This case

indicates that the heterogeneity in job stability can have a similar effect on the responses

as the heterogeneity in productivity—because type 1 job is more stable, it enjoys a higher

surplus in expected present value. Case (iv) combines cases (ii) and (iii). In case (iv), type

2 jobs are “bad jobs” in that they are lower-paying and less stable. In this sense, this model

features a dual labor market.

One notable observation is that a stronger reaction to aggregate shocks comes together

with strong responses to type-specific shocks. As is consistent with Proposition 1, ψi is

positive and φi is negative in all specifications. A 1% positive type-1 specific productivity

shock in case (ii), for example, leads to 13% decline in vacancy posting of type-2 jobs. The

consequences of any shocks are significantly larger for the type of jobs that have smaller

surplus.

Table 5 calculates the business-cycle statistics for the case (iv). It shows that the labor

market volatility in this case is about twice as large as the baseline case. Although the

9Mortensen and Nagypál (2007) and Pissarides (2009) argue that the appropriate target for the aggregate
elasticity of v/u with respect to p (corresponding to the aggregate version of ψi + φi in our model) should
be 7.56. They calculate this number by multiplying the relative standard deviation of v/u compared to
p and multiplying the correlation coefficient of v/u and p. Their argument is that, given the existence of
measurement errors and other shocks, it is more reasonable to target the OLS coefficient in the data rather
than the relative standard deviation as the concept that corresponds to the elasticity of v/u with respect to
p in the model. The corresponding number in Table 4 is (0.259/0.013) × 0.393 = 7.83. This number in Table
3 is (0.041/0.0130) × 0.961 = 3.03, similar to the value of ψi + φi of 3.2. In Table 5 below, this becomes
(0.089/0.0129) × 0.959 = 6.61. If the goal were to simply achieve the value of 7.83, the current model with
p̄1 = 1.023, p̄2 = 0.977, and σ1 = σ2 = 0.034 would provide the corresponding number of 8.20. Therefore,
this framework can resolve the labor market volatility puzzle once it is assumed that there are some (by the
magnitude of less than 5%) differences in productivity between type 1 jobs and type 2 jobs.

10One of the justifications that Hagedorn and Manovskii (2008) mention in defending their calibration of
a high flow utility of unemployment is that the standard DMP model is an approximation of a model with
worker heterogeneity. Mortensen and Nagypál (2007) criticize this reasoning by arguing that what matters
for firms’ incentive in a random matching environment is the average surplus, not the surplus of a marginal
worker. Our model shows that if jobs (instead of workers) are heterogeneous, the incentive of posting vacancies
for marginal jobs may be affected strongly by the small change in productivity.
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separation probabilities are different across jobs, the Beveridge curve is still intact in the

sense that u and v are negatively correlated.11

4 Conclusion

This paper analyzed a simple extension of the basic DMP model. A particular focus was how

heterogeneity of jobs influences the conditions for the efficiency of the equilibrium outcome

and the business cycle dynamics.

On efficiency, it was shown that the well-known Hosios condition can be generalized to

the case of ex ante heterogeneous jobs. The generalized condition is a simple modification of

the original condition by Hosios (1990), and the generalized condition takes into account the

fact that there may be externalities across different types of vacancies.

Regarding the reaction to productivity shocks, it was shown that vacancies tend to re-

spond positively to the productivity shocks of their own type and respond negatively to the

shocks of other types. The negative responses to the other types’ shocks is because a positive

shock to other markets drives up the wages, affecting the firms’ incentive to post vacancies.

The quantitative exercise shows that introducing heterogeneity can have a significant effect

on business cycle dynamics because the surplus of “bad jobs” can be low and thus these jobs

can respond strongly to shocks.

Properties of unemployment fluctuations are significantly different when even a relatively

small productivity gap between types exist. This result may change if on-the-job search is

allowed. When on-the-job search is available, the advantage of being unemployed (in terms

of the ability to search for a good job) may not be much stronger than being employed in a

bad job. In that case, as a result, the option value of being unemployed would be lower. In

such a situation, a large productivity gap between good jobs and bad jobs would be necessary

for the surplus of a bad job to be small.

The business-cycle result of this paper clarifies an important point that the chance of

finding a good job influences the value of unemployment significantly. This means that

the dynamics of unemployment is also influenced heavily by the possibility of moving from

unemployment to good jobs. The fact that the value of being employed in a bad job is close

to the value of unemployment means that it is likely that the separation margin would be

also more important for such jobs in a model with endogenous separations.

This paper’s results point to several possible directions of future research. First, the

nature of the externalities in the matching market across different types of jobs can be im-

11The response of the type-2 jobs are even larger for a larger differences in p̄i and σi. For example, if
p̄1 = 1.027, p̄2 = 0.973 with σ1 = σ2 = 0.034, ψ1 = 6.2, φ1 = −4.3, ψ2 = 267.4, and φ2 = −205.2. This
extreme case is not presented above because the vacancy creation of type-2 jobs shuts down completely when
the value of p̂ is very low (which is within the simulation range of the model). One has to solve the model
nonlinearly in order to deal with this case. It can be done, for example, by applying the method in Krusell et
al. (2010, Appendix N). Also see Petrosky-Nadeau and Zhang (2017) for another nonlinear solution method.
It is also the case that adding a hiring cost (or a firing cost), in addition to vacancy cost, generates stronger
responses as emphasized in Mortensen and Nagypál (2007) and Pissarides (2009). Fluctuations in discount
factors, as analyzed in Mukoyama (2009) and Hall (2017), can be another source of amplification.
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portant. Therefore, the measurement of such externalities is valuable. Second, heterogeneity

in jobs creates interactions between good jobs and bad jobs through workers’ outside options.

The possibility of unemployed workers being able to find good jobs is an important factor in

considering whether the surplus from a low-productivity (or unstable) match is large or small.

Thus empirically investigating who fills the good jobs (whether the ones from unemployment

or from bad jobs) is an important research topic for the analysis of labor market fluctuations.

Third, the model indicates that a larger proportion of bad jobs are created during booms,

possibly affecting the measurement of the cost of business cycle fluctuations.12 Empirically

testing this theoretical prediction is thus another important future research topic.13

12The classic reference is Lucas (1987). See, for example, Mukoyama and Şahin (2006) and Krusell et al.
(2009) for the analysis with worker heterogeneity.

13This prediction is consistent with the empirical patterns of the entry of U.S. manufacturing plants, doc-
umented by Lee and Mukoyama (2015). They show that the productivity of entering plants (relative to
incumbent plants) is lower during the booms compared to the recessions.
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Appendix

A Proofs

Proof of Proposition 1. Here, I use the notation qi(θi) instead of qi(θ), because I assume

that there are no externalities across markets. Log-linearizing (9) yields

p̄ip̂i = (Ai + Bi)θ̂i +
∑
j 6=i
Bj θ̂j , (22)

where

Ai ≡ (r + σi)κiηi(θ̄i)

(1− γi)qi(θ̄i)
> 0

and

Bi ≡ γiκiθ̄i

1− γi
> 0.

Here, ηi(θi) ≡ −qi′(θi)θi/qi(θi) > 0 is the elasticity of qi(θi) with respect to θi.

Now, suppose that p̂i > 0 and p̂j = 0 for all j 6= i. Then, combining (22) for j, k 6= i,

Aj θ̂j = Akθ̂k

holds. Thus, θ̂j and θ̂k have the same sign. Meanwhile, the right-hand side of (22) for j 6= i

has to sum up to zero, which means that θ̂i has to have the opposite sign from θ̂j (for all

j 6= i). Combining (22) for i and j 6= i,

p̄ip̂i = Aiθ̂i −Aj θ̂j .

Because θ̂i and θ̂j have the opposite sign, it has to be the case that θ̂i > 0 and θ̂j < 0.

Proof of Proposition 2. The equation (11) can be rewritten as

−κi + µiqi(θ) +
∑
j

µjθj
∂qj(θ)

∂θi
= 0

and thus

−κi + µi

(
1 +

∑
j µ

jθj(∂qj(θ)/∂θi)

µiqi(θ)

)
qi(θ) = 0. (23)

By comparing this and (8), which implies

−κi + Si(1− γi)qi(θ) = 0,
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one can see that the condition (14) is satisfied if

γi = −
∑

j µ
jθj(∂qj(θ)/∂θi)

µiqi(θ)

holds. Then plugging the expression for Si (which should be equal to µi) in (8) into this

equation yields the condition (16) in Proposition 2. Now, it is straightforward to check that

when (16) is satisfied, the equilibrium values of Si and θi together satisfy (23) and therefore

(11). Equation (13) is satisfied by the construction here.

B Log-linearized solutions to the discrete-time model

The task here is to utilize the log-linearized version of (20) to obtain the solutions for the

response of θit on the productivity shocks p̂it and p̂jt , where i, j = 1, 2.

The left-hand side of (20), divided by βq(θt), can be rewritten as

κi

(1− γi)βχ(θit)
−η

and thus can be log-linearized as

κi

(1− γi)βχ
η(θ̄i)η θ̂it.

On the right-hand side, inside the expectations, there are three terms. The first term,

pit+1 − h, can be log-linearized as p̄ip̂it+1. The second term can be rewritten as

(1− σi)κi

(1− γi)χ(θit+1)
−η −

γiθit+1κ
i

1− γi
.

This can be log-linearized as

(1− σi)κi

(1− γi)χ
η(θ̄i)η θ̂it+1 −

γiκi

1− γi
θ̄iθ̂it+1.

The third term in the right-hand side of (20) is

−
γjθjt+1κ

j

1− γj
.

This can be log-linearized as

− γjκj

1− γj
θ̄j θ̂jt+1.
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Thus, the log-linearized version of (20) can be written as

Ωiθ̂it = Et[p̄
ip̂it+1 + Γiθ̂it+1 + Ξiθ̂jt+1],

where

Ωi =
κi

(1− γi)βχ
η(θ̄i)η,

Γi =
(1− σi)κi

(1− γi)χ
η(θ̄i)η − γiκi

1− γi
θ̄i,

and

Ξi = − γjκj

1− γj
θ̄j .

With the guess

θ̂it = ψip̂it + φip̂jt

and using Et[p̂
i
t+1] = ρp̂it,

Ωiψip̂it + Ωiφip̂jt = ρp̄ip̂it + ρ(Γiψi + Ξiφj)p̂it + ρ(Γiφi + Ξiψj)p̂jt

holds, which implies that

Ωiψi = ρp̄i + ρ(Γiψi + Ξiφj) (24)

and

Ωiφi = ρ(Γiφi + Ξiψj) (25)

have to hold. Equation (24) can be rewritten as

ψi =
ρp̄i + ρΞiφj

Ωi − ρΓi
.

From (25) for j,

φj =
ρΞj

Ωj − ρΓj
ψi

holds. Therefore,

ψi =

(
1− ρ2ΞiΞj

(Ωi − ρΓi)(Ωj − ρΓj)

)−1
ρp̄i

Ωi − ρΓi

and

φj =
ρΞj

Ωj − ρΓj

(
1− ρ2ΞiΞj

(Ωi − ρΓi)(Ωj − ρΓj)

)−1
ρp̄i

Ωi − ρΓi
.
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