
Appendix to “Labor-Market Matching with Precautionary Savings

and Aggregate Fluctuations” by Krusell, Mukoyama, and Şahin

A Related literature

The attempt of creating a unified framework in which one can study business cycles with a frictional

labor market started in 1990s. After the important contributions of Merz (1995) and Andolfatto

(1996) who incorporated a DMP type labor market structure in the standard RBC model, the

challenge of relaxing the complete-market assumption emerged.

This extension, in principle, involves substantial complications in several aspects. First, as in

the standard BHA models with aggregate shocks, the wealth distribution (an infinite-dimensional

object) now enters into the decision problems as a state variable. Second, the Nash bargaining is

more complex; in particular, the wage determination is no longer summarized by a simple surplus-

sharing rule and the wage level depends on the asset level of individual workers. Third, due to

market incompleteness, it is no longer clear who owns the firm and what the firm does with its

profits.

In our paper, we deal with the first challenge by extending the computational method by

Krusell and Smith (1998, 1997). We allow for individual Nash bargaining and compute the wage

as a function of the asset level; thus, there is no single wage. To price the firm, we let the firm

be owned by consumers and add sufficient aggregate assets so that the present-value of the profit

stream is well defined.

Valdivia (1996) is an early attempt to study a model with market incompleteness, frictions, and

consumer heterogeneity in a business-cycle setting. To overcome the above challenges, Valdivia

(1996) makes several strong assumptions. In particular, he assumes that firms’ profits are equally

distributed across all households (he did not allow for trading equity which is the claim to firms’

profits). In addition, he applies a simple sharing rule to determine the wages in the presence of

asset heterogeneity.

Recently, various other studies have attempted to solve similar class of models. Costain and
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Reiter (2005, 2007), Kallock (2006), Bils et al. (2009), Nakajima (2007), Rudanko (2006, 2009),

Shao and Silos (2007), Jung and Kuester (2008) recently studied DMP models with risk aversion

and imperfect consumption insurance. These papers vary considerably in the ways they deal with

the aforementioned difficulties. The models of Costain and Reiter (2005) and Kallock (2006) do not

have capital stock in production process and instead allow simple storage technologies as means of

self-insurance. In that sense their models are not easily comparable with standard RBC models.

Costain and Reiter (2007), Bils et al. (2009), Nakajima (2007), Shao and Silos (2007), and

Jung and Kuester (2008) feature capital stock for production. Jung and Kuester (2008) assume

that there are two types of agents: some cannot save or borrow, while the others have access to

complete insurance. This assumption makes the computation easier, but this asset structure is

rather extreme as a description of reality. Bils et al. (2009), Nakajima (2007), and Shao and Silos

(2007) utilize variants of Krusell-Smith method, while Costain and Reiter (2007) apply a method

based on projection and perturbation techniques. Bils et al. (2009), Shao and Silos (2007), and

Costain and Reiter (2007) separate agents (ex ante) into two classes: workers and entrepreneurs.

They assume that firms are owned by entrepreneurs who either have linear utility or are not subject

to uninsurable idiosyncratic shock. This allows the firm’s profit discounting to be well defined.

However, this ex-ante separation makes it difficult to use the model for evaluating the heterogeneous

effect of policies, since in reality many consumers are employed as workers and also own stocks at the

same time. Nakajima (2007) simplifies the wage bargaining by assuming that a “union” bargains

with the firm for the single wage for all workers. He also makes a simplifying assumption that

the firm’s profit is discounted at the same rate as the return to the capital stock. Shao and Silos

(2007) also make the “union bargaining” type assumption to eliminate the dependence of wages

on asset positions of workers. Bils et al. (2009) and Costain and Reiter (2007) allow individual

wage bargaining which allows the wages to depend on the workers’ asset levels. Rudanko (2006,

2009) develops a model where workers and entrepreneurs are distinguished by their ability to access

capital markets. While entrepreneurs have access to complete asset markets, workers are excluded

from asset markets completely.
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Some of these papers have features that we do not have in our model. For example, Nakajima

(2007) allows for labor-leisure choice of employed workers, Bils et al. (2009) and Shao and Silos

(2007) allow for heterogeneous productivity of individuals, Rudanko (2006, 2009) considers long-

term wage contracts, and Jung and Kuester (2008) has wage rigidity. From this viewpoint, these

papers can be considered complementary to ours.

B Consistency in the valuation of the firm

This appendix establishes that the valuation of the firm is consistent across the individual job level

and the aggregate level (equity price).

• Aggregate level (equity price):

p̃ = d+ qp̃ (30)

holds, where

d =

∫

π(a)fe(a)da − ξv

is dividend (same as the text) and q is the discount factor for the firm.

Note that p̃ is different from p in the text. p̃ is the value of the firm before the dividend is

paid, and p is the value of the firm after the dividend is paid. They are related by p̃ = p+ d.

In fact, (30) implies

p+ d = d+ q(p+ d),

and therefore p = q(p+ d). From (1), the discount factor q is equal to 1/(1 + r − δ).

• Individual job level:

Define J(a) and V with

J(a) = π(a) + q(σV + (1 − σ)J(ψe(a))) (31)

and

V = −ξ + q

[

(1 − λf )V + λf

∫

J(ψu(a))
fu(a)

u
da

]
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and note that

p̃ =

∫

J(a)fe(a)da. (32)

In addition, V = 0 must hold in equilibrium.

Note also that in steady state, assuming that ψu(a) and ψe(a) are increasing,

∫ a

a

fe(a
′)da′ = λw

∫ ψ−1
u (a)

a

fu(a
′)da′ + (1 − σ)

∫ ψ−1
e (a)

a

fe(a
′)da′

holds. Differentiating with respect to a, using Leibniz’s rule, we obtain

fe(a) = λwfu(ψ
−1
u (a))γu(a) + (1 − σ)fe(ψ

−1
u (a))γe(a), (33)

where

γu(a) =
dψ−1

u (a)

da
=

1

ψ′
u(ψ

−1
u (a))

(34)

and

γe(a) =
dψ−1

e (a)

da
=

1

ψ′
e(ψ

−1
e (a))

. (35)

Inserting (31) into (32), we obtain

p̃ =

∫

π(a)da + q

∫

(1 − σ)J(ψe(a))fe(a)da.

(Note that we used V = 0.) Adding vV (from (7)), which is equal to zero, to the right-hand side,

we arrive at

p̃ =

∫

π(a)da − ξv + q

[

λfv

∫

J(ψu(a))
fu(a)

u
da+

∫

(1 − σ)J(ψe(a))fe(a)da

]

.

The first two terms equal d; thus, it is sufficient to show that

λfv

∫

J(ψu(a))
fu(a)

u
da+

∫

(1 − σ)J(ψe(a))fe(a)da = p̃. (36)

To show this, inserting (33) into (32) we obtain

p̃ =

∫

J(a)λwfu(ψ
−1
u (a))γu(a)da+

∫

J(a)(1 − σ)fe(ψ
−1
u (a))γe(a)da.
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In the first term, replace the variable a by a = ψu(a
′). Then a′ = ψ−1

u (a). The first term will

become

λw

∫

J(ψu(a
′))fu(a

′)γu(ψu(a
′))ψ′

u(a
′)da′,

where the final ψ′
u(a

′) is the Jacobian. Using λwu = λfv and (34), this is equal to the first term in

(36). The second term is similar, using (35).

C Recursive stationary equilibrium

Definition 1 (Recursive stationary equilibrium) The recursive stationary equilibrium con-

sists of a set of value functions {W̃ (w, a), J̃(w, a), W (a), J(a), U(a), V }, a set of decision rules for

asset holdings {ψ̃e(w, a), ψe(a), ψu(a)}, prices {r, p, ω(a)}, vacancy v, matching probabilities λf

and λw, dividend d, and the distribution of employment and asset µ (which contains the information

of fe(a), fu(a), and the unemployment rate u) which satisfy

1. Consumer optimization:

Given the job-finding probability λw, prices {r, p}, and wage w, the individual decision rules

ψ̃e(w, a) and ψu(a) solve the optimization problems (3) and (6), with the value functions

W̃ (w, a) and U(a). Given the wage function ω(a), W (a) and ψe(a) satisfy (4) and (5).

2. Firm optimization:

Given prices r and w, distribution µ, and the employed consumer’s decision rule ψ̃e(w, a),

the firm solves the optimization problem (8), with the value function J̃(w, a). Given the wage

function ω(a), J(a) satisfies (9). Given the worker-finding probability λf , r, the unemployed

consumer’s decision rule ψu(a), and µ, V satisfies (7).

3. Free entry:

The number of vacancy posted, v, is consistent with the firm free-entry: V = 0.

4. Asset market:
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The asset-market equilibrium condition

∫

ψe(a)fe(a)da+

∫

ψu(a)fu(a)da = (1 − δ + r)k̄ + p+ d

holds: the left-hand side is the total asset supply and the right-hand side is the total asset

demand. The no-arbitrage condition (1) holds. Dividend d satisfies (10). k̄ satisfies k̃ =

k̄/(1 − u), where k̃ satisfies the firm’s first-order condition: r = zF ′(k̃) for given r.

5. Matching:

λf and λw are functions of v and u as in Section 3.2.

6. Nash bargaining:

The wage function ω(a) is determined through Nash bargaining between the firms and the

consumers by solving (11).

7. Consistency:

µ is the invariant distribution generated by λw, σ, and the consumer’s decision rules.

D Solution of the model without aggregate shocks

1. We use a discrete grid on a; the grid is fine for the value function and coarser for the wage

function. For value function, we use 1000 grid points with equal distance over [0, 500]. For

the wage function, we use 125 grid points.37 In between the grid points, the values of the

functions are interpolated using cubic splines.38

2. Guess an ω(a).

3. Guess a θ. Note that this will give us λw and λf . From the steady-state condition

uλw = (1 − u)σ,

we know u. Since ν/u = θ, we also know ν.

37In some experiments, we use 50 grid points to gain stability.
38When this interpolation does not perform well, we used linear interpolation.
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4. Guess k̄. Since r = zf ′(k̃), where k̃ = k̄/(1 − u), we know r.

5. In the worker’s problem, note that since

p =
p+ d

1 + r − δ
, (37)

we can define

a = (1 + r − δ)(k + px) (38)

and write the employed worker’s budget constraint as

a′ = (1 + r − δ)(a + w − c).

We also know w as a function of a. So let us solve the worker’s problem as

W (a) = max
a′

u(c) + β
[

σU(a′) + (1 − σ)W (a′)
]

subject to

a′ = (1 + r − δ)(a + ω(a) − c)

and

U(a) = max
a′

u(c) + β
[

(1 − λw)U(a′) + λwW (a′)
]

subject to

a′ = (1 + r − δ)(a+ h− c).

If necessary, we can interpolate on ω(a).

6. Given this, we know the asset and employment decision rules for workers, so we can easily

calculate the invariant distribution for the worker’s idiosyncratic states. These are calculated

by iterating over the density functions, fu(a) and fe(a), until these converge. (The initial

condition that we used for this iteration is that everyone holds the amount k̄ of the asset.)

7. In the firm’s problem, first iterate on

J(a) = zF (k̃) − rk̃ − ω(a) +
1

1 + r − δ
(1 − σ)J(ψe(a))

until convergence. (We already used the fact that V = 0.)
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8. Calculate the right-hand side of V as

−ξ +
1

1 + r − δ
λf

∫

J(ψw(a))
fu(a)

u
.

This quantity should be zero in equilibrium; if it is positive, our θ is too low, and if it is

negative, our θ is too high.

9. We can calculate d from

d =

∫

π(ω(a))fe(a)da− ξν.

Here, π(ω(a)) = zf(k̃) − rk̃ − ω(a). From (37), we calculate p. Summing up (38) for each

individual i,
∫

aidi = (1 + r − δ)

[
∫

kidi+ p

∫

xidi

]

.

Since
∫

kidi = k̄ and
∫

xidi = 1, k̄ should satisfy

k̄ =
1

1 + r − δ

∫

aidi− p.

If this k̄ is different from the initial guess, we have to update.

10. Finally, we can calculate the new ω(a) for each a from Nash bargaining:

max
w

(

W̃ (w, a) − U(a)
)γ (

J̃(w, a) − V
)1−γ

.

Here, we can use V = 0. W̃ (w, a) is the solution to

W̃ (w, a) = max
a′

u(c) + β
[

σU(a′) + (1 − σ)W (a′)
]

subject to

a′ = (1 + r − δ)(a + w − c).

J(w, a) is the solution of

J̃(w, a) = zF (k̃) − rk̃ − w +
1

1 + r − δ
(1 − σ)J(ψ̃e(w, a)).

11. Repeat until convergence.
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E Higher risk aversion

Table 14 presents the summary statistics for different utility functions with the Shimer calibration.

One is log utility, and the other is u(c) = c1−ζ/(1 − ζ) with ζ = 5 (we kept the other parameters

constant, except that the vacancy cost ξ is adjusted so that θ = 1.0 holds in equilibrium). Larger

ζ is associated with higher precautionary savings and thus with higher k̄. Higher k̄ leads to larger

profitability of each vacancy: v increases, θ increases, and u decreases. Naturally, p and d increase.

ξ θ u v k̄ p d w

log utility 0.5315 1.00 7.69% 0.0769 66.54 0.82 0.004 2.48

ζ = 5 0.5390 1.00 7.69% 0.0769 66.80 0.83 0.004 2.48

Table 14: Summary statistics for the model without aggregate shocks. w is the average wage in

the economy.
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Figure 10: Wages for log utility and u(c) = c1−ζ/(1 − ζ) with ζ = 5.

Figure 10 compares the wage functions across different utility functions (log and ζ = 5). The

change in wages close to the borrowing constraint is larger with ζ = 5. This is because the

outside option U(a) is very low for a nearly constrained worker, when the utility function has large

curvature. The resulting wage dispersion is higher in this case (mean-min wage ratio is 1.185)
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compared to the log utility case.
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Figure 11: Asset distribution for log utility.

Figure 11 plots the asset holding density for the log utility case. (Asset distributions are similar

for ζ = 5 case.) As can be seen from the asset distribution, consumers avoid to be at the very

lower tail of the asset distribution. This is due to the additional savings incentive that arises in

our model. The wealth distribution here, clearly, is not realistic, but this is probably not a major

shortcoming; in the present setting, the only source of wealth inequality is unemployment shocks

(there is no ex-ante consumer/worker heterogeneity, and there are no other shocks, such as wage

shocks).

The additional incentive for saving can be seen easily from the Euler equations of the con-

sumers.39 For employed consumers, the Euler equation is (when they are not borrowing-constrained)

u′(ct) = β(1 + r − δ)
[

σu′(cut+1) + (1 − σ)(1 + ω′(at+1))u
′(cet+1)

]

,

where ct is the current consumption and cut+1 is the future consumption in the case of unemployment,

cet+1 is the future consumption in the case of employment. For unemployed consumers, the Euler

39For the purposes of illustration, we assume that the wage function ω(a) is differentiable. In the numerical

calculations below, we do not make this assumption.
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equation is

u′(ct) = β(1 + r − δ)
[

(1 − λw)u′(cut+1) + λw(1 + ω′(at+1))u
′(cet+1)

]

.

These Euler equations are standard except for ω′(at+1), which turns out to be positive in our

calibration.
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Figure 12: Derivative of the wage function for log utility and u(c) = c1−ζ/(1 − ζ) with ζ = 5.

Figure 12 plots ω′(at+1) for the log utility case and ζ = 5 case. ω′(at+1) is large for the

consumers with low asset holdings. Consumers with low asset holdings cannot insure themselves

from being unemployed—since they have no other resources to consume (they are constrained by

the borrowing limit), they suffer from low consumption when they are unemployed. This makes

their bargaining position weaker. As the asset level increases, the consumers are better insured,

and their value function becomes closer to linear. As a consequence, ω(a) becomes flatter. Note

that when the utility function is linear (as in standard DMP model), the wage doesn’t depend on

a. We will see later that the aggregate behavior of our model is very similar to the linear utility

model.

In this model, a positive ω′(at+1) provides an extra incentive to save. When the wage is Nash
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bargained, the consumers try to escape from the low asset holding level. As a result, most of the

populations stay in the part where ω(a) is flat. Thus, the homogeneity of the wages across the

population is generated by the endogenous choice of asset by the consumers.

Now, we change z in our incomplete markets model with ζ = 5.0 and compare it with the linear

model. Table 15 summarizes the results. The results are remarkably similar in both economies.

y u v θ k̄

z = 0.98-linear −2.94% 7.94% −3.5% −4.7% −2.95%

z = 0.98-incomplete −2.94% 7.79% −3.5% −4.7% −2.96%

z = 1.02-linear +2.97% 7.75% +3.5% +4.7% +2.97%

z = 1.02-incomplete +2.97% 7.60% +3.7% +5.0% +2.99%

Table 15: Comparative statics for the linear model and for the incomplete-markets model with

ζ = 5, all in % deviations from the z = 1.00 case, except for u.

F Comparison to the linear model

In this section, we compare our result to the linear DMP model. In it, the consumer maximizes

∞
∑

t=0

βtct

subject to

c+
a′

1 + r − δ
= a+ w

when working and

c+
a′

1 + r − δ
= a+ h

when unemployed. Here, a = k + px holds, as in the original model. Because utility is linear,

1 + r − δ = 1/β holds. Now, since the workers are indifferent in terms of the timing of the

consumption, without loss of generality, we can let a′ = a for everyone, and set

ct =
r − δ

1 + r − δ
a+w
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for employed and

ct =
r − δ

1 + r − δ
a+ h

for unemployed. Since the first terms of the right-hand sides are constant and common across the

employment states, we can factor them out in the utility function and consider ct = w and ct = h

without loss of generality.

The value functions become

W = w +
1

1 + r − δ
[σU + (1 − σ)W ]

and

U = h+
1

1 + r − δ
[(1 − λw)U + λwW ].

On the firm side, the value of a filled job is

J = y − w +
1

1 + r − δ
[σV + (1 − σ)J ],

where y is defined as

y = arg max
k̃

zk̃α − rk̃,

that is,

y = z
( r

αz

)
α

α−1

− r
( r

αz

)
1

α−1

,

since

k̃ =
( r

αz

)
1

α−1

.

The value of vacancy is

V = −ξ +
1

1 + r − δ
[λfJ + (1 − λf )V ]. (39)

From free entry, V = 0.

Now, since W − U and J − V is linear in w, the Nash bargaining solution results in the simple

surplus-sharing rule:

W − U = γS
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and

J − V = (1 − γ)S, (40)

where

S = (W − U) + (J − V ) (41)

is the total surplus.

From (39), (40), and the free-entry condition,

S =
(1 + r − δ)ξ

(1 − γ)λf

holds. From (41) and the value functions,

S =
(1 + r − δ)(y + ξ − h)

r − δ + σ + (1 − γ)λf + γλw

holds. Combining these two, simplifying, and using the definitions of λf and λw, the following

holds:

y − h

r − δ + σ + γχθ1−η
=

ξ

(1 − γ)χθ−η
.

This is the same as equation (21) in Hornstein et al. (2006). This equation is shown as equation

(12) in the main text.

G The role of wealth dispersion

In this appendix we look at a slightly different model in order to be able to accommodate more larger

dispersion in wealth. In particular, we generate wealth dispersion that is such that a much larger

fraction of workers are in the upward-sloping part of the wage curve. To do this, we employ a very

simple version of the setting with heterogeneity in patience studied in Krusell and Smith (1998).40

We assume that there are two types of agents with permanently different discount factors: one group

has βh = 0.997 and the other βl = 0.995. For simplicity, we moreover assume that patient agents

do not have labor income (which would be a small part of their earnings anyway, given that they

40One could also pursue the possibility that wages are highly dispersed, and random; see Castañeda, Dı́az-Giménez

and Ŕıos-Rull (2003). The approach taken here was guided merely by ease of computation.
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will accumulate large amounts of wealth). Thus, their income is perfectly deterministic and their

equilibrium consumption in steady state will be constant, implying that the equilibrium interest

rate in steady state must be given by r = 1/βh−1+δ. We solve and compare three different models:

the linear model, the incomplete-markets model with log utility and the incomplete-markets model

with ζ = 5. We calibrate the vacancy cost to ξ = 0.632 (constant across economies) by targeting

θ = 1 in the incomplete-markets model with logarithmic utility. For the linear model, we use the

same discount rate for the firm and for the consumers.

Figure 13 shows the wage function and the asset distribution of the unemployed. As can be

seen from the asset distributions, there is now a much larger mass of agents in the curved part of

the wage distributions.
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Figure 13: Wage functions (left panel) and asset distribution for the unemployed (right panel).

Table 16 presents the comparative statics with respect to productivity (z) for all three specifica-

tions. Though the unemployment levels differ between three models, the responses of the economy

to changes in z are remarkably similar.
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y u v θ k̄

z = 0.98-linear −2.94% 7.94% −3.5% −4.7% −2.95%

z = 0.98-incomplete −2.94% 7.79% −3.5% −4.7% −2.95%

z = 1.02-linear +2.97% 7.75% +3.5% +4.7% +2.97%

z = 1.02-incomplete +2.96% 7.60% +3.5% +4.7% +2.97%

Table 16: Comparative statics for the linear model and for the incomplete-markets, all in % devi-

ations from the z = 1.00 case, except for u.

H Recursive equilibrium

The following defines the recursive equilibrium of the model with aggregate shocks.

Definition 2 (Recursive equilibrium) The recursive equilibrium consists of a set of value func-

tions {W̃ (w, a; z, S), J̃(w, a; z, S), W (a; z, S), J(a; z, S), U(a; z, S), V (z, S)}, a set of decision

rules for asset holdings {ψ̃z
′

e (w, a; z, S), ψz
′

e (a; z, S), ψz
′

u (a; z, S)}, prices {r(z, S), p(z, S), Qg(z, S),

Qb(z, S), ω(a; z, S)}, vacancy v(z, S), matching probabilities λf (z, S) and λw(z, S), dividend d(z, S),

and a law of motion for the distribution, S′ = Ω(z, S), which satisfy

1. Consumer optimization:

Given the aggregate states, {z, S}, job-finding probability λw(z, S), prices {r(z, S), p(z, S),

Qg(z, S), Qb(z, S)}, wage w, and the law of motion for the distribution, S′ = Ω(z, S); the

individual decision rules ψ̃z
′

e (w, a; z, S) and ψz
′

u (a; z, S) solve the optimization problems (19)

and (22), with the value functions W̃ (w, a; z, S) and U(a; z, S). Given the wage function

ω(a; z, S), W (a; z, S) and ψz
′

e (a; z, S) satisfy (20) and (21).

2. Firm optimization:

Given the aggregate states, {z, S}, prices {r(z, S), Qg(z, S), Qb(z, S)}, wage w, the law

of motion for the distribution, S′ = Ω(z, S), and the employed consumer’s decision rule

ψ̃z
′

e (w, a; z, S), the firm solves the optimization problem (24) with (25), with the value func-

tions J̃(w, a; z, S). Given the wage function ω(a; z, S), J(a; z, S) satisfies (26). Given the
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aggregate states, {z, S}, the worker-finding rate λf (z, S), prices Qg(z, S) and Qb(z, S), and

the unemployed consumer’s decision rule ψz
′

u (a; z, S), V (z, S) satisfies (23).

3. Free entry:

The number of vacancy posted, v(z, S), is consistent with the firm free-entry: V (z, S) = 0.

4. Asset markets clear:

The asset-market equilibrium condition (29) holds for each z′ and the asset prices satisfy (17)

and (18). Dividends d(z, S) are given by (27). k̄ satisfies k̃ = k̄/(1−u), where k̃ satisfies the

firm’s first-order condition r(z, S) = zF ′(k̃) for given r(z, S).

5. Matching:

λf (z, S) and λw(z, S) are functions of v(z, S) and u as in Section 3.2.

6. Nash bargaining:

The wage function ω(a; z, S) determined through Nash bargaining between the firms and the

consumers by solving (28).

7. Consistency:

The transition function Ω(z, S) is consistent with λw(z, S), σ, and the consumer’s decision

rules.

I Resource balance/goods-market equilibrium

In this subsection, we show that the resource balance condition (goods-market equilibrium condi-

tion)

c̄+ k̄′ = (1 − δ)k̄ + zF (k̃)(1 − u) − ξv + hu

holds, where

k̃ =
k̄

1 − u
,

c̄ ≡

∫

ce(a; z, S)fe(a;S)da +

∫

cu(a; z, S)fu(a;S)da,
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ce(a; z, S) ≡ a+ ω(a; z, S) −Qg(z, S)ψge (a; z, S) −Qb(z, S)ψbe(a; z, S), (42)

and

cu(a; z, S) ≡ a+ h−Qg(z, S)ψgu(a; z, S) −Qb(z, S)ψbu(a; z, S). (43)

Note that the asset-market equilibrium condition (29) holds.

The first step is to show that

∫

afe(a;S)da +

∫

afu(a;S)da = (1 − δ + r(z, S))k̄ + p(z, S) + d(z, S) (44)

is implied by the asset-market equilibrium in the last period and the law of motion for the individual

states.

Assuming that the decision rules for a′ are increasing in a, the law of motion for the asset

distribution is as follows:

∫ a′

a

fe(ã;S
′)dã = λw

∫ (ψz′
u )−1(a′;z,S)

a

fu(a;S)da + (1 − σ)

∫ (ψz′
e )−1(a′;z,S)

a

fe(a;S)da (45)

∫ a′

a

fu(ã;S
′)dã = (1 − λw)

∫ (ψz′
u )−1(a′;z,S)

a

fu(a;S)da + σ

∫ (ψz′
e )−1(a′;z,S)

a

fe(a;S)da.

Here, (ψz
′

u )−1(a′; z, S) denotes the value of a that satisfies a′ = ψz
′

u (a; z, S).

To derive (44), we use a one-period-forwarded version:

∫

a′fe(a
′;S′)da′ +

∫

a′fu(a
′;S′)da′ = (1 − δ + r(z′, S′))k̄′ + p(z′, S′) + d(z′, S′).

From (29), we need to show that

∫

a′fe(a
′;S′)da′ +

∫

a′fu(a
′;S′)da′ =

∫

ψz
′

e (a; z, S)fe(a;S)da +

∫

ψz
′

u (a; z, S)fu(a;S)da. (46)

Differentiating (45) with respect to a′,

fe(a
′;S′) = λwfu((ψ

z′

u )−1(a′; z, S);S)ρe(a
′; z, S) + (1 − σ)fe((ψ

z′

e )−1(a′; z, S);S)ρu(a
′; z, S), (47)

where

ρu(a
′; z, S) =

d(ψz
′

u )−1(a′; z, S)

da′
=

1

(ψz′u )′((ψz′u )−1(a′; z, S); z, S)
(48)
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and

ρe(a
′; z, S) =

d(ψz
′

e )−1(a′; z, S)

da′
=

1

(ψz′e )′((ψz′e )−1(a′; z, S); z, S)
.

Now, multiply both sides of (47) with a′ and integrate to obtain

∫

a′fe(a
′;S′)da′

= λw
∫

a′fu((ψ
z′

u )−1(a′; z, S);S)ρe(a
′; z, S)da′

+(1 − σ)
∫

a′fe((ψ
z′

e )−1(a′; z, S);S)ρu(a
′; z, S)da′.

(49)

Changing variables by using a′ = ψz
′

u (a; z, S) (implying a = (ψz
′

u )−1(a′; z, S)), the first term on the

right-hand side becomes

λw

∫

ψz
′

u (a; z, S)fu(a;S)ρe(ψ
z′

u (a; z, S); z, S)(ψz
′

u )′(a; z, S)da,

where (ψz
′

u )′(a; z, S) is a Jacobian. From (48), this is equal to

λw

∫

ψz
′

u (a; z, S)fu(a;S)da.

Similarly, the second term on the right-hand side of (49) is equal to

(1 − σ)

∫

ψz
′

e (a; z, S)fe(a;S)da.

Therefore, (49) becomes

∫

a′fe(a
′;S′)da′ = λw

∫

ψz
′

u (a; z, S)fu(a;S)da+ (1 − σ)

∫

ψz
′

e (a; z, S)fe(a;S)da.

Similarly, we can show that

∫

a′fu(a
′;S′)da′ = (1 − λw)

∫

ψz
′

u (a; z, S)fu(a;S)da + σ

∫

ψz
′

e (a; z, S)fe(a;S)da.

Summing up, we obtain (46).

Next, integrating (42) and (43) for everyone gives us

−c̄+
∫

afe(a;S)da +
∫

afu(a;S)da +
∫

ω(a; z, S)fe(a;S)da + hu

=
∫

Qg(z, S)ψge (a; z, S)fe(a;S)da +
∫

Qb(z, S)ψbe(a; z, S)fe(a;S)da

+
∫

Qg(z, S)ψgu(a; z, S)fu(a;S)da +
∫

Qb(z, S)ψbu(a; z, S)fu(a;S)da.
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From (44), the left-hand side of this expression is equal to

−c̄+ (1 − δ + r(z, S))k̄ + p(z, S) + d(z, S) +

∫

ω(a; z, S)fe(a;S)da + hu. (50)

In equilibrium, there are 1 − u jobs in the economy and each job employs k̃ = k̄/(1 − u) units of

capital. Thus, (25) becomes

π(a; z, S) = zF (k̃) − r(z, S)k̃ − ω(a; z, S).

From (27) and
∫

fe(a;S)da = (1 − u), (50) is equal to

−c̄+ (1 − δ)k̄ + p(z, S) + zF (k̃)(1 − u) − ξv + hu.

Therefore, we have to show that

k̄′ + p(z, S)

=
∫

Qg(z, S)ψge (a; z, S)fe(a;S)da +
∫

Qb(z, S)ψbe(a; z, S)fe(a;S)da

+
∫

Qg(z, S)ψgu(a; z, S)fu(a;S)da +
∫

Qb(z, S)ψbu(a; z, S)fu(a;S)da.

From (29), the right-hand side is equal to

Qg(z, S)[(1 − δ+ r(g, S′))k̄′ + p(g, S′) + d(g, S′)] +Qb(z, S)[(1 − δ+ r(b, S′))k̄′ + p(b, S′) + d(b, S′)].

From the asset-pricing equations (17) and (18), this is equal to k̄′ + p(z, S).

J Solution of the model with aggregate shocks

Since we have many state variables, we use a relatively small number of grid points: 60 points in

a direction for the value functions, 15 points in a direction for the wage function, 4 points in the

k̄ as well as the u direction. For a, we use more grids close to 0 to accommodate more curvature.

We use cubic splines in a direction and linear interpolation in other directions.

1. Assume a law of motion for aggregate capital,

log k̄′ = a0 + a1 log k̄ + a2 log u+ a3 log z, (51)
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prediction rules for the current aggregate variables as functions of the aggregate state,

log θ = b0 + b1 log k̄ + b2 log u+ b3 log z, (52)

where we note that u′ can be calculated once θ is given as

u′ = (1 − λw(θ))u+ σ(1 − u), (53)

and asset-price functions,

log(p(z, k̄, u) + d(z, k̄, u)) = c0 + c1 log k̄ + c2 log u+ c3 log z (54)

logQz(z, k̄, u) =

{

d0 + d1 log Q̃z(z, k̄, u) + d2 log k̄ + d3 log u if z = g

e0 + e1 log Q̃z(z, k̄, u) + e2 log k̄ + e3 log u if z = b,
(55)

where Q̃z(z, k̄, u) ≡ πzz/(1 − δ + r(z, k̄′, u′)) (note that k̄′ and u′ are obtained as functions of

z, k̄, and u by the above equations). Q̃z is the exact value of Qz when g = b. We expect Qz

not to be too different from Q̃z when shocks are not too large. When z = g, we can calculate

Qb using

Qg(z, k̄, u)(1 − δ + r(g, k̄′, u′)) +Qb(z, k̄, u)(1 − δ + r(b, k̄′, u′)) = 1. (56)

When z = b, this can be used to calculate Qg, given Qb. In total, we have 20 coefficients to

iterate on.

2. Start the loop on individual optimization and Nash bargaining.

(a) Outside loop: assume an initial wage function ω(a; z, k̄, u) for each aggregate grid point

(z, k̄, u).

(b) Give the initial values for the value functions, W (a; z, k̄, u) and U(a; z, k̄, u).

(c) Inside loop: for each value (grid point) of a, k̄, u, z, perform the worker’s individual

optimization.

(d) Repeat until W (a; z, k̄, u) and U(a; z, k̄, u) converge.

(e) Calculate J(a; z, k̄, u) by using the worker’s decision rule and noting that V (a; z, k̄, u) =

0.
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(f) Based on the above functions, we calculate W̃ (w, a; z, k̄, u) and J̃(w, a; z, k̄, u), and per-

form Nash bargaining for each aggregate state. Thus, the Nash bargaining delivers

the wage function ω(a; z, k̄, u) based on W̃ (w, a; z, k̄, u), U(a; z, k̄, u), J̃(w, a; z, k̄, u) and

V (a; z, k̄, u)(= 0).

(g) Revise the wage function ω(a; z, k̄, u) by taking a weighted average of the original wage

function and the new wage function obtained in the previous step. Repeat until conver-

gence.

Note that with aggregate shocks, the wage depends not only on a but also on the aggregate

state, (z, k̄, u). The wage function, ω(a; z, k̄, u), is defined on 15× 2× 4× 4 grid points. (The

Nash bargaining is performed at each of these points.) For each (z, k̄, u), the wage function (as

a function of a) is interpolated using the cubic splines between grid points. In the simulation

(next step), we need to compute the wages for (k̄, u) that are not on the grid. In that case,

we first compute a wage function ωz∗k̄∗u∗(a) for a specific (z∗, k̄∗, u∗) by linearly interpolating

in k̄ and u directions. Then ωz∗k̄∗u∗(a) is used to compute the wage at each a (interpolated

by cubic spline between a grids).

3. Simulation.

(a) Give initial values for a, employment status, k̄, u, and z. (Note that the sum of a is

equal to [(1 − δ + r)k̄ + p+ d], so once we have k̄, u, and z, we know the sum of a.)

(b) Using the condition that

V (z, S) = −ξ +Qg(z, S)((1 − λf (θ))V (g, S′) + λf (θ)
∫

J(ψgu(a; z, S); g, S′)[fu(a;S)/u]da)

+Qb(z, S)((1 − λf (θ))V (b, S′) + λf (θ)
∫

J(ψbu(a; z, S); b, S′)[fu(a;S)/u]da)

must equal zero (using the prediction rules (51), (52), and (53) for k̄′ and u′ in evaluating

the future value function), we can calculate the equilibrium value of θ. Then we know

v = uθ. Record this value of θ as “data” (for later use).

(c) Calculate u′ using the computed value of θ and (53). Note that this u′ may not be the

same as the u′ predicted using (53), if the prediction rules are incorrect. Record this u′

as data.

22



(d) Calculate the sums of a′gs and a′bs from the consumer’s decisions. Call them A′
g and A′

b.

From asset-market equilibrium,

A′
g = (1 − δ + r(g, k̄′, u′))k̄′ + p(g, k̄′, u′) + d(g, k̄′, u′) (57)

and

A′
b = (1 − δ + r(b, k̄′, u′))k̄′ + p(b, k̄′, u′) + d(b, k̄′, u′) (58)

have to hold. These may not hold if the consumers’ prediction rules are incorrect. Here,

we search for the values of Qg, Qb, and k̄′ so that these two equations and (56) hold.

To this end, consider the case of z = g. (When z = b, g and b are reversed everywhere.)

The main idea here follows Krusell and Smith (1997).

Note that (57) can be rewritten as

k̄′ =
A′
g − p(g, k̄′, u′) − d(g, k̄′, u′)

1 − δ + r(g, k̄′, u′)
(59)

and that (58) can be rewritten as

k̄′ =
A′
b − p(b, k̄′, u′) − d(b, k̄′, u′)

1 − δ + r(b, k̄′, u′)
.

Therefore,

A′
g − p(g, k̄′, u′) − d(g, k̄′, u′)

1 − δ + r(g, k̄′, u′)
=
A′
b − p(b, k̄′, u′) − d(b, k̄′, u′)

1 − δ + r(b, k̄′, u′)
(60)

holds. We will search for a Qg that satisfies (60); we can expect that A′
g is decreasing

in Qg and A′
b is decreasing in Qb.

41 Note that Qb can be calculated as a (decreasing)

function of Qg, from (56). To calculate A′
g and A′

b for each Qg, we re-calculate the

optimization problem for a given Qg: for employed consumers

Ŵ (Qg, a; z, k̄, u) = max
a′g ,a

′
b

u(c) + β[ πzg(σU(a′g; g, k̄
′, u′) + (1 − σ)W (a′g; g, k̄

′, u′))

+πzb(σU(a′b; b, k̄
′, u′) + (1 − σ)W (a′b; b, k̄

′, u′))]

41We use (51), (52), (53), (54), and r = zF ′(k̃) to calculate p(z′, k̄′, u′) + d(z′, k̄′, u′) and r(z′, k̄′, u′). Thus, they

are not functions of our unknowns.
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subject to

c+Qga
′
g +Qb(Qg)a

′
b = a+ ω(a; z, k̄, u),

a′g ≥ a,

a′b ≥ a,

and k̄′ and u′ given, and for the unemployed

Û(Qg, a; z, k̄, u) = max
a′g ,a

′
b

u(c) + β[ πzg((1 − λw)U(a′g; g, k̄
′, u′) + λwW (a′g; g, k̄

′, u′))

+πzb((1 − λw)U(a′b; b, k̄
′, u′) + λwW (a′b; b, k̄

′, u′))]

subject to

c+Qga
′
g +Qb(Qg)a

′
b = a+ h,

a′g ≥ a,

a′b ≥ a,

and k̄′ and u′ given.

Now calculate A′
g and A′

b with this method for different values of Qg until we find a Qg

that makes (60) hold with equality. If we are in a rational-expectations equilibrium, this

Qg has to equal the Qg from the prediction rule (55).

Then we calculate k̄′ from (59) and Qb from (56). Record the values of Qg, Qb, and k̄′

as data.

(e) From

d(z, k̄, u) =

∫

π(a; z, k̄, u)fe(a; k̄, u)da− ξv,

where π(a; z, k̄, u) = π̃(ω(a; z, k̄, u); z, k̄, u), we can obtain data on d(z, k̄, u). (We already

know all the values determining the first term, and v was obtained in an earlier step.)

(f) From

p(z, k̄, u) = Qg(z, k̄, u)[p(g, k̄
′, u′) + d(g, k̄′, u′)] +Qb(z, k̄, u)[p(b, k̄

′, u′) + d(b, k̄′, u′)],

we can obtain data on p(z, k̄, u). Here, Qg and Qb were obtained in an earlier step, and

for p(z′, k̄′, u′) + d(z′, k̄′, u′), we use the prediction rules (51), (52), (53), and (54).
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(g) With a random number generator, obtain z′ and move to the next period. The individ-

ual’s employment and asset status are also forwarded to the next period. The individual

asset holdings are represented by a density function.42 Repeat from step (b) for N peri-

ods. Discard the first n periods from the sample. We set N = 2000 and n = 500 in our

program.

(h) Using all the above data (k̄, z, u, θ, Qz, p, d), we can revise the laws of motion,

labor-market tightness functions, and pricing functions by running ordinary least squares

regressions.

(i) Repeat until the prediction rules (the laws of motion, labor market tightness functions,

and pricing functions) predict the simulated data with sufficient accuracy (high R2). As

stated in the main text, we find prediction rules that are very accurate. For the Shimer

calibration, all R2s are larger than 0.9999. For the HM calibration, all R2s are larger

than 0.999. R2 here is defined as

R2 ≡ 1 −

∑2000
t=501(mt −mp

t )
2

∑2000
t=501(mt − m̄)2

,

where mt is the simulated value of a variable, mp
t is the predicted value of mt using the

prediction rule (law of motion) that the consumers used in the optimization step and

the simulated values of the right-hand-side variables, and m̄ is the average of mt.

K Laws of motion and prediction rules

K.1 The Shimer calibration

The law of motion for capital stock is

log k̄′ = 0.06851 + 0.9823 log k̄ − 0.0022 log u+ 0.0451 log z, R2 = 0.99999.

42The period-0 density is given exogenously, but we discard a sufficient number of initial periods from the sample in

the regressions below in order to remove the influence of the initial distribution. For the Shimer calibration, we used

a uniform distribution on [0, 2k̄]. For the HM calibration, since the distribution moves slowly, we used the stationary

distribution from the no-aggregate-shocks model as the initial distribution. In both cases, we checked that the results

are not sensitive to the choice of the initial distribution.
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The prediction rules for the other aggregate variables are

log θ = −2.1080 + 0.5071 log k̄ + 0.0079 log u+ 1.3912 log z, R2 = 0.99999,

log(p + d) = −1.8735 + 0.3902 log k̄ − 0.0544 log u+ 1.0495 log z, R2 = 0.99969,

logQg = −0.5830 − 4.1619 log Q̃g + 0.0538 log k̄ + 0.0015 log u, R2 = 0.99994,

logQb = 0.5138 + 5.6423 log Q̃b − 0.0465 log k̄ − 0.0013 log u, R2 = 0.99994,

where Q̃g and Q̃b are functions of z, k̄, and u (see Appendix J). Thus, almost all the variation in the

left-hand-side variables (θ, p+ d,Qg, Qb) can be explained by the predicted value in the right-hand

side.

K.2 The HM calibration

The law of motion for capital stock is

log k̄′ = 0.0847 + 0.9785 log k̄ − 0.0021 log u+ 0.0327 log z, R2 = 0.99999.

The prediction rules for the other aggregate variables are

log θ = −159.9317 + 73.4443 log k̄ − 2.7952 log u+ 197.4511 log z

−8.4340(log k)2 + 0.0043(log u)2 − 45.5953 log k log u

−1.1617 log u log z − 0.6528 log k log u, R2 = 0.99999,

log(p + d) = −4.9175 + 1.3456 log k̄ − 0.0549 log u+ 3.2854 log z, R2 = 0.99997,

logQg = 0.3631 + 1.7347 log Q̃g − 0.1415 log k̄ − 0.0008 log u

+0.0160(log k)2 − 0.0001(log u)2 + 0.0000 log k log u, R2 = 0.99992,

and

logQb = −0.1182 − 0.1234 log Q̃b + 0.0100 log k̄ + 0.0004 log u

+0.000002(log k)2 + 0.0000(log u)2 + 0.000004 log k log u, R2 = 0.99914,

where Q̃g and Q̃b are functions of z, k̄, and u.
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L Accuracy of the computational algorithm

The agents in our model use a linear law of motion to forecast next period’s capital stock (k̄′).

Similarly, they use linear (or quadratic) prediction rules to predict the other aggregate variables

(θ, (p + d), Qg and Qb) for the current period. To evaluate the agents’ forecasting and prediction

abilities we compute the errors that they make in forecasts 1 period ahead and 25 years (200

periods) ahead.

We assume that the agents in the economy have the knowledge of the the current period’s capital

stock and the unemployment rate. By only using this information and next period’s technology

shock, agents can predict aggregate variables 1 period ahead by using the linear prediction rules.

We start from period 501 of our simulation and compute the capital stock, interest rate, and

unemployment rate 1 period ahead and the current period’s (θ, (p + d), Qg and Qb). Then we

compare these predicted values with values that we observe from the simulations. We report

two measures of accuracy: the correlation between the values implied by the linear rules and the

simulations and the maximum percentage deviation from the value implied by the simulation. We

also report the forecasting and prediction errors for 25-years-ahead forecasts.

1 period ahead 25 years ahead

Variable corr(x, x̂) max % error corr(x, x̂) max % error

k̄′ 1.000000 0.0052 0.999947 0.0474

θ 0.999992 0.0335 0.999986 0.0461

p+ d 0.999998 0.0474 0.999995 0.0545

Qg 1.000000 0.0058 1.000000 0.1061

Qb 1.000000 0.0060 1.000000 0.1125

r 1.000000 0.0036 0.999984 0.0325

u′ 0.999996 0.0059 0.999984 0.0121

Table 17: Forecasting and prediction accuracy for the Shimer calibration where x is the value of

the variable from the simulations and x̂ is the predicted value.
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1 period ahead 25 years ahead

Variable corr(x, x̂) max % error corr(x, x̂) max % error

k̄′ 1.000000 0.0064 0.999968 0.0605

θ 0.999990 0.5906 0.999985 0.5971

p+ d 0.999992 0.2235 0.999989 0.1918

Qg 1.000000 0.0296 1.000000 0.2355

Qb 1.000000 0.0243 1.000000 0.1645

r 1.000000 0.0109 0.999995 0.0373

u′ 0.999996 0.1946 0.999991 0.2784

Table 18: Forecasting and prediction accuracy for the HM calibration where x is the value of the

variable from the simulations and x̂ is the predicted value.

M Data for the U.S. economy and calculation of the cyclical statis-

tics of the model

Output (data): We compute the logarithm of quarterly real GDP per capita and detrend it by

using an HP filter. The smoothing parameter that we use is 1600. The standard deviation of the

cyclical component is 0.0158.

Stock prices and dividends (data): We compute the standard deviation of the cyclical compo-

nent of the stock market prices and dividends for 1951-2004 period. This data set is constructed by

Robert Shiller. See http://www.irrationalexuberance.com/index.htm. We use monthly data

for stock prices and dividends which are normalized by CPI. We adjust the monthly data to quar-

terly frequency. For stock prices we select the monthly value for the 3rd, 6th, 9th, and 12th month

of each year. For the dividends, we sum up the monthly flows for three months. The standard devi-

ation of the cyclical component of the natural logarithm of stock prices is 0.1012 and for dividends

it is 0.0286. Dividends fluctuate far less than stock prices. The finding that a typical economic

model produces much less fluctuation in the stock prices (compared to the dividend fluctuations)

has been labeled the “stock-market volatility puzzle” in the literature (Shiller (1981)).

Vacancy-unemployment ratio (data): The vacancy-unemployment ratio is constructed by cal-

culating the ratio of the Help Wanted Advertising Index to the rate of unemployment, measured
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in index units per thousand workers. This data set was constructed by Robert Shimer. See

http://home.uchicago.edu/ shimer/data/mmm/. The data are quarterly and span the period of

1951 to 2005. First we detrend the natural logarithm of the vacancy-unemployment ratio and then

compute the standard deviation of the cyclical component of the series.

Investment, consumption and wage (data): We report these statistics from Andolfatto (1996).

Labor share (data): Rı́os-Rull and Santaeulàlia-Llopis (2007) find that the standard deviation

of the labor share is 43% of that of output. Andolfatto (1996) reports this number to be 68% of

that of output.

Model: We simulate our model for 2000 periods, discard the first 500 periods, and then adjust the

generated data to a quarterly frequency. We detrend the series by using an HP filter with a smooth-

ing parameter of 1600 for output, investment, consumption, the average wage, the labor share, the

stock price, the dividend, and the vacancy-unemployment ratio. The values of these variables at

time t are calculated using the simulated data as follows: output is calculated as ztk̄
α
t (1−ut)

1−α−ξvt,

investment is k̄t+1 − (1 − δ)k̄t, consumption is ztk̄
α
t (1 − ut)

1−α − k̄t+1 + (1 − δ)k̄t − ξvt + hut, the

average wage is the average wage of the employed agents in the economy at time t, the labor share

is the average wage divided by zt(k̄t/(1 − ut))
α, and the vacancy-unemployment ratio is vt/ut.

Tables 19 and 20 report additional statistics from our model. We consider two different measures

of the stock price either p or p+ k̄, and two different measure of dividends either d or d+ (1 + r−

δ)k̄ − k̄′).

U.S. Model Model

Economy Shimer HM

Stock price (p) 6.41 0.98 2.88

Stock price (p+ k̄) 6.41 0.27 0.25

Dividend (d) 1.81 31.24 82.57

Dividend (d+ (1 + r − δ)k̄ − k̄′) 1.81 5.59 1.87

Table 19: Standard deviation of detrended series divided by the standard deviation of output. All

variables are logged and HP-filtered. Note that standard deviation of output is 0.0158 for the U.S.

data, 0.0138 for the Shimer calibration and 0.0159 for the HM calibration.
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U.S. Model Model

Economy Shimer HM

Stock price (p) 0.34 0.95 0.89

Stock price (p+ k̄) 0.34 0.24 0.57

Dividend (d) 0.36 0.99 0.45

Dividend (d+ (1 + r − δ)k̄ − k̄′) 0.36 −0.98 −0.83

Table 20: Correlation with output. All variables are logged and HP-filtered.

N The linear model with aggregate shocks

We consider the “large family” construction as in Merz (1995). The consumer (“family”) maximizes

E

[

∞
∑

t=0

βtct

]

subject to

ct + k̄t+1 = (1 + rt − δ)k̄t + wt(1 − ut) + hut + dt.

From the first-order condition for capital accumulation (Euler equation),

Et[(1 + rt+1 − δ)] =
1

β
(61)

holds.

The net output per match, yt, is defined as

yt = arg max
k̃t

ztk̃
α
t − rtk̃t, (62)

where k̃t is the capital-output ratio (k̄t/(1 − ut)) at time t. From the first-order condition,

rt = αztk̃
α−1
t (63)

holds. Using this and (61), k̃t+1, is solved as a function of zt and solution to

πzgα[k̃′(z)]α−1 + πzbα[k̃′(z)]α−1 =
1

β
+ δ − 1,

where k̃t+1 is now denoted as k̃′(z). Solving this, we obtain

k̃′(z) =

(

1/β + δ − 1

πzgαg + πzbαb

)
1

α−1

.
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From (63), the interest rate can be solved as:

r(z−1, z) = αz[k̃′(z−1)]
α−1,

where z−1 is the value of zt−1. From (62), the net output per match is:

y(z−1, z) = z[k̃′(z−1)]
α − r(z−1, z)k̃

′(z−1).

It will turn out (verified later) that wt is a function of zt−1 and zt. Thus we denote it as

w(z−1, z). On the firm side, the value of a filled job is

J(z−1, z) = y(z−1, z) − w(z−1, z) + βE[σV (z′) + (1 − σ)J(z, z′)|z].

The value of a vacancy is

V (z) = −ξ + βE[λfJ(z, z′) + (1 − λf )V (z, z′)|z]. (64)

Note that V depends only on z. From free entry, V (z) = 0. This condition determines θ, and thus

θ is a function of z: θ(z). Thus λf and λw are also a function of z.

The value functions for the consumers become

W (z−1, z) = w(z−1, z) + βE[σU(z, z′) + (1 − σ)W (z, z′)|z]

and

U(z−1, z) = h+ βE[(1 − λw)U(z, z′) + λwW (z, z′)|z].

Since W (z−1, z) − U(z−1, z) and J(z−1, z) − V (z) are linear in w(z−1, z), the Nash bargaining

solution results in the simple surplus-sharing rules

W (z−1, z) − U(z−1, z) = γS(z−1, z)

and

J(z−1, z) − V (z) = (1 − γ)S(z−1, z), (65)

where

S(z−1, z) = (W (z−1, z) − U(z−1, z)) + (J(z−1, z) − V (z)) (66)
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is the total surplus. Thus, w is indeed a function of z−1 and z.

From (64), (65), and the free-entry condition V (z) = 0,

ξ = β[πzgλf (z)(1 − γ)S(z, g) + πzbλf (z)(1 − γ)S(z, b)]. (67)

There are two equations (for each z) here, which determine θ(z) given S(z, z′). From (66) and the

value functions,

S(z−1, z) = y(z−1, z) − h+ β(πzgS(z, g) + πzbS(z, g))(1 − σ − γλw(z)). (68)

There are four equations here (for each z−1 and z). Recall that

λf (z) = χθ(z)−η

and

λw(z) = χθ(z)1−η.

Thus, (67) and (68) can be solved for six unknowns: S(z−1, z) and θ(z).

Once these are found, we can calculate the wage as

w(z−1, z) = y(z−1, z) − (1 − γ)S(z−1, z) + β(1 − σ)(πzg(1 − γ)S(z, g) + πzb(1 − γ)S(z, b)).

Unemployment follows

u′ = u+ σ(1 − u) − λw(z)u.

Vacancies can be calculated as

v = θ(z)u.

Since the sum of J(z−1, z)s across firms, (1 − u)J(z−1, z), is equal to the stock price before the

dividend payment, p+ d, we have

p = (1 − u)J(z−1, z) − d = (1 − u)(1 − γ)S(z−1, z) − d.

Here, d is the sum of profits across firms:

d = (1 − u)(y(z−1, z) − w(z−1, z)) − ξv.
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The capital stock, k̄t, is

k̄t = (1 − ut)k̃t(zt−1).

GDP, Yt, is (1 − ut)yt(zt−1, zt) − ξvt, investment is k̄t+1 − (1 − δ)k̄t, and consumption is

ct = Yt + (1 − δ)k̄t − k̄t+1.

Tables 21 and 22 summarize the statistics for each state from our simulations. All the values

are shown as percentage deviations of the average value in each state from the total average, except

for u. We can see that all variables are more volatile than in our baseline model. Especially in

the HM calibration, the volatility of labor market variables (u, v, θ) are more pronounced in the

linear model. This is a result of the consumption smoothing process. Capital adjusts slowly in our

baseline model where the adjustment is instantaneous in the linear model.

u v θ k̄ p d

z = b 7.78% −3.2% −4.1% −3.0% −3.0% −82.9%

z = g 7.63% 3.1% +3.9% +2.9% +2.9% +80.0%

Table 21: Summary statistics of the simulated data (Shimer calibration).

u v θ k̄ p d

z = b 10.53% −14.0% −29.9% −4.3% −10.1% −238.5%

z = g 7.42% +15.7% +33.7% +4.8% +11.4% +268.2%

Table 22: Summary statistics of the simulated data (HM calibration).

O Complete-markets model with aggregate shocks

As in Merz (1995), we can think of the economy as consisting of many large families. Each family

insures the workers from idiosyncratic shocks. There are many such families, so that each family

takes the aggregate states (z, k̄, u) as given. The family’s utility function is

E

[

∞
∑

t=0

βt log(ct)

]

.
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The optimization problem is given from

R(k,X) = max
c,k′

log(c) + β[πzgR(k′,X ′
g) + πzbR(k′,X ′

b)]

subject to

c+ k′ = (1 + r(X) − δ)k + (1 − u)w(X) + uh+ d(X),

where X ≡ (z, k̄, u) is the aggregate state. k is the individual capital stock for the family. In

equilibrium, k = k̄ holds. Xg represents (g, k̄, u) and Xb represents (b, k̄, u). For the family,

the vacancy-unemployment ratio θ(X), dividend d(X), and the wage function w(X) are given.

Unemployment evolves following u′ = u+ σ(1 − u)− λw(θ)u. The interest rate r(X) is given from

the firm’s optimization as

r(X) = αz

(

k̄

1 − u

)α−1

.

Thus, given w(X), d(X), and θ(X), this optimization can be carried out. Note that it will turn

out that only aggregate state variables appear in the Nash bargaining, so that w is only a function

of X (changing k does not affect wage).

This optimization will result in the individual decision rules k′ = κ̃(k,X) and c = ζ̃(k,X). The

equilibrium values for k̄′ and c are given by k̄′ = κ(X) = κ̃(k̄,X) and c = ζ(X) = ζ̃(k̄,X). A

one-period Arrow security which gives one unit of consumption goods conditional on z′ (note that

k̄′ and u′ are predetermined) can be priced as

Qz′(X) = βπzz′
ζ(X)

ζ(X ′)
.

The matched workers and the unemployed workers can be viewed as “assets” from the viewpoint

of the family. The former generate w(X) every period and the latter generate h per period. Thus,

the value of these assets, respectively, are

W (X) = w(X) +Qg(X)[σU(X ′
g) + (1 − σ)W (X ′

g)] +Qb(X)[σU(X ′
b) + (1 − σ)W (X ′

b)]

and

U(X) = h+Qg(X)[(1−λw(X))U(X ′
g)+λw(X)W (X ′

g)]+Qb(X)[(1−λw(X))U(X ′
b)+λw(X)W (X ′

b)].
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The value of a filled job is

J(X) = y(X) − w(X) +Qg(X)[σV (X ′
g) + (1 − σ)J(X ′

g)] +Qb(X)[σV (X ′
b) + (1 − σ)J(X ′

b)]

and the value of a vacancy is

V (X) = −ξ+Qg(X)[λf (X)J(X ′
g)+(1−λf (X))V (X ′

g)]+Qb(X)[λf (X)J(X ′
b)+(1−λf(X))V (X ′

b)].

From free entry, V (X) = 0. This condition determines θ(X).

The surplus per match, y(X), can be calculated by

y(X) = z

(

k̄

1 − u

)α

− r(X)

(

k̄

1 − u

)

.

Since W (X)−U(X) and J(X)−V (X) are linear in w(X), the Nash bargaining solution results

in the simple surplus-sharing rules

W (X) − U(X) = γS(X)

and

J(X) − V (X) = (1 − γ)S(X),

where

S(X) = (W (X) − U(X)) + (J(X) − V (X)) (69)

is the total surplus. Thus, w is indeed a function of X.

From (69) and the value functions, S(X) can be computed using the mapping

S(X) = y(X) + ξ − h+ (Qg(X)S(X ′
g) +Qb(X)S(X ′

b))(1 − σ − (1 − γ)λf (X) − γλw(X)).

This gives J(X) = (1 − γ)S(X).

Given J(X) and V (X) = 0,

0 = −ξ +Qg(X)λf (X)J(X ′
g) +Qb(X)λf (X)J(X ′

b).

Thus

λf (X) =
ξ

Qg(X)(1 − γ)S(X ′
g) +Qb(X)(1 − γ)S(X ′

b)
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will solve for θ(X), since λf (X) = χθ(X)−η.

One can then calculate the wage from

w(X) = y(X) + ξ − (1 − γ)S(X) + (1 − σ − λf (X))(Qg(X)(1 − γ)S(X ′
g) +Qb(X)(1 − γ)S(X ′

b)),

and thus43

w(X) = y(X) + ξ − (1 − γ)S(X) +
(1 − σ − λf (X))ξ

λf (X)
.

Unemployment follows

u′ = u+ σ(1 − u) − λw(X)u

and vacancies are given by

v = θ(X)u.

Since the sum of J(X), (1 − u)J(X), is equal to the stock price before the dividend payment,

p+ d,

p = (1 − u)J(X) − d = (1 − u)(1 − γ)S(X) − d.

Here, d is the sum of profits across firms:

d(X) = (1 − u)(y(X) − w(X)) − ξv.

Tables 23, 24, 25, and 26 summarize the properties of the model. These are very similar to the

incomplete-markets outcome reported in the text.

43This corresponds to Andolfatto’s (1996) equation (23).
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u v θ k̄ p d

z = b 7.75% −2.6% −3.3% −0.4% −2.5% −50.0%

z = g 7.65% +2.2% +2.8% +0.3% +2.1% +41.8%

Table 23: Summary statistics of the simulated data (Shimer calibration).

u v θ k̄ p d

z = b 8.79% −10.2% −20.6% −0.4% −7.6% −132.2%

z = g 7.18% +8.5% +17.2% +0.3% +6.3% +110.5%

Table 24: Summary statistics of the simulated data (HM calibration).

U.S. economy Complete market Complete market

model: Shimer model: HM

Investment 3.14 3.82 2.97

Consumption 0.56 0.30 0.20

Labor share 0.43 0.04 0.35

Wage 0.44 0.94 0.30

Vacancy-unemployment ratio 16.27 1.46 8.5

Table 25: Standard deviation of detrended series divided by the standard deviation of output. All

variables are logged and HP-filtered. Note that standard deviation of output is 0.0158 for the U.S.

data, 0.0138 for the Shimer calibration, and 0.0159 for the HM calibration.
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U.S. Model Model

Economy Shimer HM

Investment 0.90 0.99 0.98

Consumption 0.74 0.93 0.92

Labor share -0.13 -1.00 -0.98

Wage 0.04 1.00 0.96

Vacancy-unemployment ratio 0.90 1.00 0.93

Table 26: Correlation with output for the complete market model.

P Comparison of models

In this section, we provide a detailed comparison of our model with the linear and complete-market

versions of the model. Note that in the linear model, consumption and investment are allowed to

be negative. For that reason, to make the comparison with the linear model possible, we apply the

H-P filter without taking the natural logarithm of the model-generated time series throughout this

section.

Tables 27, 28, and 29 compare the three models for the Shimer calibration. These tables

reveal that all three models are very similar in terms of the labor market outcomes. The vacancy-

unemployment ratio is more volatile in the linear model. Because of consumption smoothing,

capital stock moves slowly in the models with concave utility, making θ’s movement smoother.

As is expected, the linear model has much more volatile investment and consumption since the

consumption smoothing motive is not present in the linear setting. The complete- and incomplete-

markets models behave very similarly with respect to the labor market. However, the complete-

markets model has less volatile investment and more volatile consumption in relative terms. In the

incomplete-markets model, some consumers are not well insured. For these consumers, an increase

in income does not necessarily lead to an immediate increase in consumption. This effect can also

be seen in the relatively low correlation between output and consumption. In the linear model,

output and investment are not strongly correlated, since investment jumps when the aggregate state
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changes and it takes one period for investment to have an effect. Output and consumption are not

strongly correlated because when the aggregate state switches from bad to good, consumption falls

initially because of the spike in investment.

Tables 30, 31, and 32 compare the three models for the HM calibration. The comparison of the

three models is qualitatively very similar to the Shimer case. Quantitatively, the differences are

more evident.

Incomplete u v θ k̄ p d

z = b 7.73% −2.6% −3.3% −0.5% −2.2% −58.3%

z = g 7.64% +2.1% +2.7% +0.4% +1.9% +48.7%

Linear u v θ k̄ p d

z = b 7.78% −3.2% −4.1% −3.0% −3.0% −82.9%

z = g 7.63% 3.1% +3.9% +2.9% +2.9% +80.0%

Complete u v θ k̄ p d

z = b 7.75% −2.6% −3.3% −0.4% −2.5% −50.0%

z = g 7.65% +2.2% +2.8% +0.3% +2.1% +41.8%

Table 27: Comparison of models, Shimer calibration.

Incomplete markets Complete markets Linear

model model model

Investment 0.91 0.77 9.14

Consumption 0.15 0.25 9.05

Labor share 0.005 0.004 0.005

Wage 0.70 0.71 0.70

Vacancy-unemployment ratio 0.43 0.44 0.45

Table 28: Standard deviation of detrended series divided by the standard deviation of output for

the Shimer calibration. All variables are HP-filtered. Note that standard deviation of output is

0.09 for the incomplete- and complete-markets models, and 0.13 for the linear model.
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Incomplete markets Complete markets Linear

model model model

Investment 0.99 0.99 0.13

Consumption 0.62 0.93 −0.02

Labor share −1.00 −1.00 −0.75

Wage 1.00 1.00 1.00

Vacancy-unemployment ratio 1.00 1.00 0.98

Table 29: Correlation with output for the Shimer calibration.

Incomplete u v θ k̄ p d

z = b 8.75% −10.2% −20.5% −0.4% −7.5% −134.7%

z = g 7.17% +8.5% +17.1% +0.4% +6.3% +112.6%

Linear u v θ k̄ p d

z = b 10.53% −14.0% −29.9% −4.3% −10.1% −238.5%

z = g 7.42% +15.7% +33.7% +4.8% +11.4% +268.2%

Complete u v θ k̄ p d

z = b 8.79% −10.2% −20.6% −0.4% −7.6% −132.2%

z = g 7.18% +8.5% +17.2% +0.3% +6.3% +110.5%

Table 30: Comparison of models, HM calibration.

Incomplete markets Complete markets Linear

model model model

Investment 0.75 0.61 9.54

Consumption 0.10 0.17 9.58

Labor share 0.04 0.04 0.03

Wage 0.22 0.22 0.20

Vacancy-unemployment ratio 1.82 1.83 1.72

Table 31: Standard deviation of detrended series divided by the standard deviation of output for

the HM calibration. All variables are HP-filtered. Note that standard deviation of output is 0.10

for the incomplete- and complete-markets models, and 0.20 for the linear model.
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Incomplete markets Complete markets Linear

model model model

Investment 0.98 0.98 −0.11

Consumption 0.37 0.92 0.17

Labor share −0.98 −0.98 −0.99

Wage 0.96 0.96 0.89

Vacancy-unemployment ratio 0.93 0.93 0.82

Table 32: Correlation with output for the HM calibration.
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