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The lectures

I In the two lectures, I will talk about the incomplete-market
models in macroeconomics.

I The first lecture lays out the basics: (i) what makes the
incomplete-market models different (from
complete-market/representative-agent models); (ii) two basic
models of incomplete markers in macroeconomics.

I The second lecture talks about computation and applications.

I Lecture slides will be on my lecture notes page:
https://sites.google.com/view/toshimukoyama/notes

(you can google my name to find my webpage)



Why incomplete market models?

I To think about the benefit of incorporating market
incompleteness into the macroeconomic analysis, we will
contrast complete-market models and incomplete-market
models.

I Comparison #1: When (i) the utility function is in a certain
class (including the CRRA utility that is often used in
macroeconomics) and (ii) the markets are complete,

• Distribution of wealth does not matter for the
macroeconomic outcome.
• We can analyze the macro questions with the

representative consumer (and only with aggregate shocks,
ignoring idiosyncratic shocks that washes out in macro).
• When my consumption goes down, the consumption of

Jeff Bezos also goes down, even if it is the time I lose a
job and Amazon makes more profit.



Gorman aggregation (Gorman, 1961; Mukoyama, 2010)

I Consider consumer i who maximizes the expected utility

E

[ ∞∑
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βt
cit(s

t)1−ν − 1
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∑
st

βt
cit(s
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where st is the state (including all history up to t), cit(s
t) is

the consumption of i at t, π(st) is the probability of the
realization of state st from the viewpoint of time 0.

I ν > 0 and ν 6= 1 and ν → 1 corresponds to the log utility.

I Assume that the asset market is complete, that is, at time 0,
the market for contingency claims (Arrow securities) for all
states st opens. Let pt(s

t) be the time-0 price of an Arrow
security that promises one unit of consumption good at time t
if state st realizes.



Gorman aggregation
I The budget constraint is

∞∑
t=0

∑
st

pt(s
t)cit(s

t) ≤Wi0(p) ≡
∞∑
t=0

∑
st

pt(s
t)ωit(s

t),

where Wi0(p) is the time-0 wealth of consumer i, which can
depend on the vector of prices p. ωit(s

t) is the endowment
(income) of i at time t if the state is st.

I For example, the deterministic flow budget constraint

ai,t+1 ≤ (1 + r)ait + yit − cit

(a0 given and limT→∞ aT /(1 + r)T = 0) can be rewritten as

∞∑
t=0

1

(1 + r)t
cit ≤

∞∑
t=0

1

(1 + r)t
ỹit,

where ỹ10 ≡ yi0 + (1 + r)a0 and ỹit = yit for t = 1, 2,...



Gorman aggregation
I From the Euler equation

1

pt(st)
π(st)cit(s

t)−ν = β
1

pt+1(st+1)
π(st+1)ci,t+1(s

t+1)−ν

cit can be rewritten as a function of ci0. Then ci0 can be
solved using the budget constraint. Consumption at each
period can be expressed as

cit(s
t) = g(st,p)Wi0(p).

Everything in g(st,p) function is common across consumers.
Thus the consumption for consumers i and j satisfies

cit(s
t)

cjt(st)
=
Wi0(p)

Wj0(p)
.

Thus I behave like “mini Jeff Bezos”—my consumption is a
fixed fraction of his, no matter what the state is.



Gorman aggregation

I This result also imply the aggregate consumption Ct(s
t) is

Ct(s
t) =

∑
i

cit(s
t) = g(st,p)

∑
i

Wi0(p) = pt(s
t)g(st,p)

∑
i

ωit(s
t),

so that for a given total endowment
∑

i ωit(s
t), the

distribution of endowment doesn’t matter for macroeconomic
outcome.
(Note that Ct(s

t) =
∑

i ωit(s
t) is the market clearing

condition so prices can be solved from pt(s
t)g(st,p) = 1 for

each state.)

I Normatively, the welfare effect of a policy change is in the
same direction for everyone unless the policy treats poor and
rich differently (e.g. tax the rich and redistribute to the poor)
AND there are no Arrow securities for policy changes
(Mukoyama, 2020).



Then maybe we can just use non-CRRA utility?

I In macroeconomics, we use CRRA utility all the time, and the
reason is not unrelated to the above argument.

I CRRA utilities belong to a class of balanced-growth
preferences (King et al., 1988). These preferences have a
property that people behave “similarly” (working similar
hours, for example) despite that the income per capita is a lot
larger. This time-series property requires “poor behaving
similarly to rich” as in the case of cross-section aggregation.

I The balanced-growth preferences also suits the analysis of
recurring situations (“business cycles are all alike”) because
we can simply detrend the growth component in the model.

I There are some subtleties—there is a fairly large literature on
both aggregation. Here I’d just like to point out the
“homotheticity” requirement is similar for the cross-sectional
aggregation and the balanced-growth property.



Why incomplete market models?

I Comparison #2: With CRRA utility, the wealth distribution
is “indeterminate”: it is not pinned down by endogenous
forces.

I With incomplete markets, often the stationary wealth
distribution is unique, and it is shaped by economic forces.

I With incomplete markets, even if people are ex ante
homogeneous, they can be ex post heterogeneous (compare
this with the overlapping-generations model), because there
are “lucky” people and “unlucky ” people.

I Policy effects (positive and normative) are heterogeneous
under incomplete markets. Room for politics, even with ex
ante homogeneous consumers, as policy opinions differ (see,
for example, Mukoyama, 2013). More on this next week.



Existence and uniqueness of stationary distribution
I Consider a model with idiosyncratic shock εit and asset ait for

consumer i. The decision rule for ai,t+1 is

ai,t+1 = a′(εit, ait).

Assuming that εit is a Markov process, the probability of
moving to (a′, ε′) tomorrow given (a, ε) today πεaε′a′ can be
constructed. Let p be the vector listing the population (total
is normalized to one) for each state (a, ε) and A be the
matrix of πεaε′a′ . (Suppose that a is discrete.) Then

p′ = Ap.

I A stationary distribution is p̄ that satisfies p̄ = Ap̄.
I With a fairly weak condition on πεaε′a′ (e.g. there exists a

state (a, ε) that is visited with strictly positive probability
starting from anywhere), the stationary distribution exists, is
unique, and can be computed by an iterative procedure
ANp0, N →∞ for any p0 (Stokey et al., 1989, Theorem
11.4). An application of the contraction mapping theorem.



Existence and uniqueness of stationary distribution

I An example: Two points in ε ∈ {b, g} with transition
probabilities νεε′ and three points in a ∈ {`,m, h}.
a′(b, `) = `, a′(b,m) = `, a′(b, h) = m, a′(g, `) = m,
a′(g,m) = h, a′(g, h) = h. Then

p′b`
p′bm
p′bh
p′g`
p′gm
p′gh

 =



νbb νbb 0 0 0 0
0 0 νbb νgb 0 0
0 0 0 0 νgb νgb
νbg νbg 0 0 0 0
0 0 νbg νgg 0 0
0 0 0 0 νgg νgg





pb`
pbm
pbh
pg`
pgm
pgh

 .

I if νεε′ > 0 for all (ε, ε′), this matrix satisfies the condition for
the Stokey et al. (1989) theorem, and the stationary
distribution exists and is unique.



Why incomplete market models?

I Comparison #3: In the complete market model, we cannot
talk about insurance policy on idiosyncratic risks.

I Various government policies (even macro models) are about
insuring against idiosyncratic risks.

I Examples: unemployment insurance (see, for example,
Mukoyama, 2013), welfare, and government-sponsored health
insurance.

I It is reasonable to think about a situation where consumers
are partially (and endogenously) insured.

I For example, many incomplete-market models consider a
situation consumers have an access only to self-insurance
(accumulating only some types of assets).



Asset pricing (Huggett, 1993; Krusell et al., 2011)

A review of the complete-market asset pricing model (Lucas,
1978):

I The problem for the representative agent:

V (a, x, z) = max
a′g ,a

′
b,x

′

c1−σ

1− σ
+ β

∑
z′=g,b

φzz′V (a′z′ , x
′, z′)

subject to

c = a+ xYz −Qga′g −Qba′b − pz(x′ − 1).

The aggregate state z has two realizations: z = g and z = b.
The consumer has an access to three assets: two Arrow
securities (price Qz and quantity az) and a “tree” (price pz
and quantity x). Assume (for simplicity) that the tree lasts
only for one period and the consumer receives one unit of a
new tree every period as endowment.



Asset pricing
Continuing the Lucas asset pricing model:
I The consumer’s FOCs:

−Qzz′c−σz + βφzz′V1(a
′
z′ , x

′, z′) = 0

for z′ = g, b and

−pzc−σz + β
∑
z′=g,b

φzz′V2(a
′
z′ , x

′, z′) = 0.

I The envelope conditions

V1(a, x, z) = c−σz

V2(a, x, z) = Yzc
−σ
z .

I Combining,

Qzz′ = βφzz′

(
cz′

cz

)−σ
pz = β

∑
z′=g,b

φzz′

(
cz′

cz

)−σ
Yz′



Asset pricing

Continuing the Lucas asset pricing model:

I Because everyone is identical, az′ = 0 and x = 1 in
equilibrium. Therefore cz = Yz. The pricing formula:

Qzz′ = βφzz′

(
Yz′

Yz

)−σ

pz = β
∑
z′=g,b

φzz′

(
Yz′

Yz

)−σ
Yz′ .

I An observation: From above, pz =
∑

z′ Qzz′Yz′ holds (Qzz′ is
the “state price”). This relationship can also be derived from
no arbitrage. Thus this relationship holds even with an
incomplete-market setting as long as all these securities exist.



Asset pricing

Continuing the Lucas asset pricing model:

I Another observation: when Yz is constant (no aggregate
shocks), a bond (promises one unit of consumption good
regardless of the state) price is

q = β
∑
z′=g,b

φzz′ = β.

I When there is a growth in consumption
cz′/cz = Yz′/Yz = 1 + g, where g > 0,

q = β(1 + g)−σ.

when σ is large, q is small (the safe rate is high). The “safe
rate puzzle.”



Asset pricing

Now, consider Huggett (1993).

I First consider the bond economy without aggregate shock
(but idiosyncratic shock ε, which can take εh or ε` randomly).

V (a, ε) = max
a′

c1−σ

1− σ
+ β

∑
ε=εh,ε`

πεε′V (a′, ε′)

subject to
c = a+ ε− qa′

and the borrowing constraint

a′ ≥ a.

Note that the borrowing constraint can be at the “natural
borrowing constraint” level (which ensures repayment) or a
tighter one.



Asset pricing

Huggett (1993).

I Following similar steps, one can show

−qc−σs + β[πshc
′−σ
h + (1− πsh)c′−σ` ] + λs = 0

holds for s = h, `, where λs ≥ 0 is the Lagrange multiplier on
the constraint a′ ≥ a.

I From here, consider a = 0. Then, no one can borrow, which
means no one can lend, and thus the equilibrium is autarky.

−qε−σs + β[πshε
−σ
h + (1− πsh)ε−σ` ] + λs = 0

I One can show that (see Krusell et al., 2011), in this case,
λ` > λh ≥ 0 and therefore the constraint is always binding for
the low-endowment consumer.



Asset pricing
Huggett (1993).
I From

−qε−σs + β[πshε
−σ
h + (1− πsh)ε−σ` ] + λs = 0,

Any value of q that is large can satisfy λ` > λh ≥ 0.
I Proposition: Any q that satisfies

q ≥ q∗ = β

[
πhh + (1− πhh)

(
εh
ε`

)σ]
.

is an equilibrium bond price.
I One can show that q∗ is the limit of the bond price as a→ 0

from below. Note that q∗ > β.
I Recall that q = β in the complete market case. The bond

price is higher (the safe rate is lower) in the
incomplete-market case. Why? The εh consumer has a strong
desire to save, to prepare for the possibility of ε` next period
(precautionary saving motive).

I A large σ can be consistent with a large q∗.



Asset pricing
Huggett (1993).

I When there are aggregate shocks, we consider a market
structure where there is an aggregate Arrow security (a
security that provides one unit of good if the next period
aggregate state is z′) for each aggregate state in the next
period z′.

I The financial market is still incomplete because the
idiosyncratic risks are not spanned by the aggregate securities.

I Various assets can be created by combining the aggregate
Arrow securities.

I The price of the aggregate Arrow security for state z′ when
the current state is z: Qzz′ .

I The individual holding of the security is denoted az′ . Note
that az′ is also the total asset balance for the consumer going
into z′. Thus it is reasonable to consider the borrowing
constraint on az′ : az′ ≥ az′ for z′ ∈ {g, b}.

I Here, once again, consider az′ = 0. The equilibrium is autarky.



Asset pricing
Huggett (1993).
I With similar steps (see Krusell et al., 2011), one can show

Proposition: Any Qzz′ that satisfies

Qzz′ ≥ Q∗zz′ = βφzz′

[
πhh|zz′ + (1− πhh|zz′)

(
εh
ε`

)σ]
.

is an equilibrium aggregate Arrow security price.
I Krusell et al. (2011) investigates the implications for pricing

various assets, including the equity premium puzzle.
I I like the aggregate Arrow security approach because:

1. Qzz′ is a state price. It is a simple way to discount the future,
including the firm profit (used in Krusell et al., 2010, for
example)

2. The security demand is easier to compute, compared to other
portfolio choice problems, because the corner solution is
relatively unlikely (compare with Krusell and Smith, 1997)

3. Conceptually, it makes sense to impose a borrowing constraint
on the total net asset holding going into each state, rather
than constraints on the holding of each asset.



Production economy
Aiyagari (1994).

I Production economy: competitive firms produce with the
(aggregate) production function

Yt = Kα
t L

1−α
t

where Yt is output, Kt is capital, and Lt is labor.

I Consumers: maximize

E0

[ ∞∑
t=0

βtU(ct)

]
subject to

ct + at+1 = wt`t + (1 + rt − δ)at

and
at+1 ≥ b.

`t is random (and exogenous), at is capital stock holding.



Production economy

Aiyagari (1994).

I The prices wt and rt are determined in competitive markets:

wt = (1− α)

(
Kt

Lt

)α−1
and

rt = α

(
Kt

Lt

)α
where

Kt =

∫
at(i)di

and

Lt =

∫
`t(i)di.



Production economy

Aiyagari (1994).

I I will talk about computation next week.

I This model looks very much like the neoclassical growth model
(Ramsey), except that each individual behavior is consistent
with the permanent-income (or life-cycle) hypothesis.

I This model (and its variations) has been used extensively in
the policy analysis (especially fiscal policy): taxation,
government debt, etc.

I Now, for these purposes, more people use finite-life
(overlapping generations) versions of this model, because
life-cycle elements are important for many policy questions
(e.g. social security).

I Labor market policies can be analyzed, too, especially after `t
process is endogenized (see, for example, Krusell et al., 2010).



Recap of today

I Why incomplete market models?

• Distribution of wealth can have impact on aggregate
dynamics
• Wealth distribution is endogenously determined. The

effects of a policy can be different across individuals.
• Can analyze the government’s insurance policy in a

partial-insurance environment.

I Asset pricing implications (Huggett, 1993)

I Introducing production (Aiyagari, 1994)
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