Firm Dynamics and the Macroeconomy: Basics

Toshihiko Mukoyama Georgetown University

University of Tokyo, July 2021 (Lecture 2)

From today, we focus on \boldsymbol{L}

If the capital is fixed,

$$A_i (K_i^{\alpha} L_i^{1-\alpha})^{\gamma} = B_i L_i^{\beta}$$

where

$$B_i = A_i K_i^{\alpha \gamma}$$

and

$$\beta = \gamma(1 - \alpha) \in (0, 1).$$

From today, we focus on L

If the rental market for capital is perfectly competitive,

$$\max_{K_i} A_i (K_i^{\alpha} L_i^{1-\alpha})^{\gamma} - rK_i$$

imply

$$K_i = \left(\frac{\alpha\gamma}{r}\right)^{\frac{1}{1-\alpha\gamma}} A_i^{\frac{1}{1-\alpha\gamma}} L_i^{\frac{\gamma-\alpha\gamma}{1-\alpha\gamma}}$$

Plugging this solution into the production function

$$A_i (K_i^{\alpha} L_i^{1-\alpha})^{\gamma} = \left(\frac{\alpha\gamma}{r}\right)^{\frac{\alpha\gamma}{1-\alpha\gamma}} A_i^{\frac{1}{1-\alpha\gamma}} L_i^{\frac{\gamma-\alpha\gamma}{1-\alpha\gamma}}$$

Thus we can write a new production function

$$B_i L_i^\beta$$

where

$$B_i = \left(\frac{\alpha\gamma}{r}\right)^{\frac{\alpha\gamma}{1-\alpha\gamma}} A_i^{\frac{1}{1-\alpha\gamma}}$$

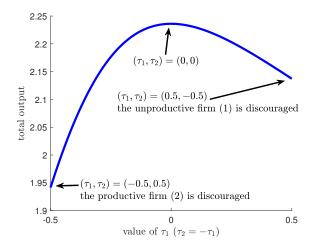
and

$$\beta = \frac{\gamma - \alpha \gamma}{1 - \alpha \gamma} \in (0, 1)$$

Misallocation

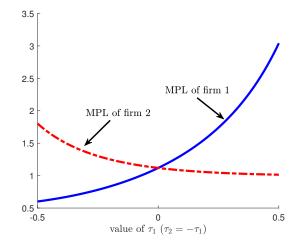
First, continuing with the discussion in the last class, let us talk about the misallocation. An example:

- There are two firms, firm 1: $Y_1 = A_1 L_1^{\alpha}$ and firm 2: $Y_2 = A_2 L_2^{\alpha}$ where $\alpha \in (0, 1)$.
- Let $A_1 = 1$ and $A_2 = 2$. $\alpha = 1/2$.
- Assume that there are firm-specific distortions τ_i (i = 1, 2).
 We can think of τ_i as a tax.
- Firm i maximizes the profit


$$(1-\tau_i)A_iL_i^\alpha - wL_i.$$

Because the actual output is $A_i L_i^{\alpha}$, the firm's decision problem is distorted.

- ► Assume that the total labor is fixed at 1. Thus w is determined by L₁ + L₂ = 1.
- The total output is computed as


$$Y = Y_1 + Y_2 = A_1 L_1^{\alpha} + A_2 L_2^{\alpha}$$

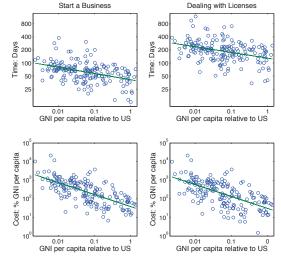
Misallocation

 The total output is reduced the most with positive correlation between the distortion (discouragement) and productivity (Restuccia and Rogerson, 2008)

Misallocation

• MPL $(\alpha A_i L_i^{\alpha-1})$ dispersion is the source of the productivity loss.

Situations where misallocations can occur: Examples


- Tax rates are different depending on firm identity/characteristics
- Regulations that depend on firm size
- Firing/hiring taxes/subsidies
- Entry/exit taxes/subsidies, some other frictions
- Financial frictions
- Contract enforcement

Notes:

- The cost of reduced entry depends on the post-entry importance of entrants.
- The importance of financial frictions depends on the persistence of shocks (whether the firm can overcome the friction by self-financing); see Moll (2014). The shock does seem to be persistent; see Lee and Mukoyama (2015). There still can be effects for young firms and potential entrants.
- The importance of contract enforcement at the industry level positively correlates with industry productivity (Mukoyama and Popov, 2020)

Entry barriers

From Moscoso Boedo and Mukoyama (2012)

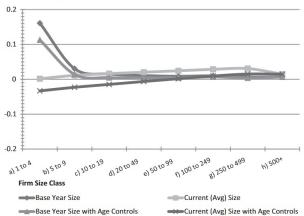
 Why? Political economy considerations (Mukoyama and Popov, 2014)

Misallocation as a theory of TFP

- Misallocation can change the measured TFP (measured by Y/L^α, for example) without changing A₁ and A₂.
- The effect can be sizable but not as much as 10-folds differences between rich and poor countries.
- For the development questions, the determination of A_i (growth of productivity at the firm level) is still important.

Firm growth

On firm growth

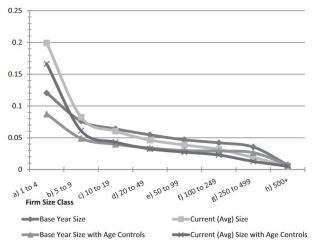

Two small points first:

- First, note that individual firm growth is not necessary or sufficient for aggregate growth.
- Second, the loss from missing entry can be large if we take firm growth into account.

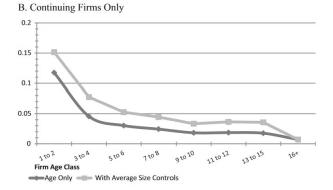
An example:

- Labor supply is elastic (employment is demand-determined).
 One firm hires one worker.
- The production of a firm who enters at time τ and age a (today is t = a + τ) is A_τe^{γa}. γ > 0 is the firm growth rate. Assume that A_τ = A₀e^{gτ}.
- The surviving firms at age a is $e^{-\delta a}$. Assume $\delta > \gamma$.
- ▶ The mass of entrants is 1.
- Outcome: The total employment is $\int_0^\infty e^{-\delta a} da = 1/\delta$. The aggregate production is $A_0 e^{gt}/(\delta + g \gamma)$.
- ▶ If Δ units of entrants are lost, the immediate loss is $\Delta A_{\tau} dt$ but the present value of loss is $\Delta A_{\tau}/(\rho + \delta \gamma)$, where ρ is the discount rate.

Figures from Haltiwanger et al. (2013)



B. Continuing Firms only


 The growth rate of a firm is independent of size: "Gibrat's Law" (mixed supports in the data)

Figures from Haltiwanger et al. (2013)

Figures from Haltiwanger et al. (2013)

Figures from Haltiwanger et al. (2013)

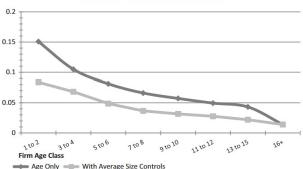


FIGURE 5.—FIRM EXIT BY FIRM AGE

References

- Cao, D., H. R. Hyatt, T. Mukoyama, and E. Sager (2020). Firm Growth through New Establishments. https://toshimukoyama.github.io/MyWebsite/CHMS.pdf.
- Haltiwanger, J., R. S. Jarmin, and J. Miranda (2013). Who Creates Jobs? Small versus Large versus Young. *Review of Economics and Statistics*.
- Hopenhayn, H. and R. Rogerson (1993). Job Turnover and Policy Evaluation: A General Equilibrium Analysis. Journal of Political Economy 101, 915–938.
- Lee, Y. and T. Mukoyama (2015). Productivity and Employment Dynamics of US Manufacturing Plants. Economics Letters 136, 190–193.
- Moll, B. (2014). Productivity Losses from Financial Frictions: Can Self-Financing Undo Capital Misallocation? American Economic Review 104, 3186–3221.
- Moscoso Boedo, H. and T. Mukoyama (2012). Evaluating the Effects of Entry Regulations and Firing Costson International Income Differences. *Journal of Economic Growth* 17, 143–170.
- Mukoyama, T. (2009). On the Establishment Dynamics in the United States and Japan. Monetary and Economic Studies 27, 53–74.
- Mukoyama, T. and S. Osotimehin (2019). Barriers to Reallocation and Economic Growth: The Effects of Firing Costs. American Economic Journal: Macroeconomics 11, 235–270.
- Mukoyama, T. and L. Popov (2014). The Political Economy of Entry Barriers. Review of Economic Dynamics 17, 383–416.
- Mukoyama, T. and L. Popov (2020). Industrialization and the Evolution of Enforcement Institutions. Economic Theory 69, 745–788.
- Restuccia, D. and R. Rogerson (2008). Policy Distortions and Aggregate Productivity with Heterogeneous Establishments. *Review of Economic Dynamics* 11, 707–720.