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Today

I Today I will cover two applications of Aiyagari (1994)-type
incomplete-market model.
• Policy evaluations
• Business cycle analysis



Last week’s main references

I Mukoyama (2010). ‘Welfare E↵ects of Unanticipated Policy
Changes with Complete Asset Markets” Economics Letters
109, 104–178.

I Krusell, Mukoyama, and Smith (2011). “Asset Prices in a
Huggett Economy,” Journal of Economic Theory 146,
812-844.



Today’s main references

I Mukoyama (2020). “Transition Dynamics in the Aiya-
gari Model, with an Application to Wealth Tax,” Lecture notes,
https://toshimukoyama.github.io/MyWebsite/Aiyagari.pdf

I Krusell, Mukoyama, Rogerson, and Şahin (2020). “Gross
Worker Flows and Fluctuations in the Aggregate Labor
Market,” Review of Economic Dynamics 37, S205-S226.
(Appendix talks about the computational method.)



Production economy

Aiyagari (1994).
I Production economy: competitive firms produce with the

(aggregate) production function

Yt = K↵
t L
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where Yt is output, Kt is capital, and Lt is labor.
I Consumers: maximize
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subject to

ct + at+1 = wt`t + (1 + rt � �)at

and
at+1 � b.

`t is random (and exogenous), at is capital stock holding.
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Production economy

Aiyagari (1994).

I The prices wt and rt are determined in competitive markets:

wt = (1� ↵)
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Production economy

Aiyagari (1994).

I This model looks very much like the neoclassical growth model
(Ramsey), except that each individual behavior is consistent
with the permanent-income (or life-cycle) hypothesis.

I This model (and its variations) has been used extensively in
the policy analysis (especially fiscal policy): taxation,
government debt, etc.

I Now, for these purposes, more people use finite-life
(overlapping generations) versions of this model, because
life-cycle elements are important for many policy questions
(e.g. social security).

I Labor market policies can be analyzed, too, especially after `t
process is endogenized (see, for example, Krusell et al., 2010).



Computation of Aiyagari (1994) in the steady state

I Recall that both w and r are functions of K/L. And both K
and L can be computed by summing up individual a and ` in
the stationary distribution.

I Individual optimization

V (a, `) = max
c,a0

U(c) + �E[V (a0, `0)|`]

subject to
c+ a0 = w`+ (1 + r � �)a

and
a0 � b

can be performed once w and r are known.

I Therefore, the steady state equilibrium can be computed with
the following steps.
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Computation of Aiyagari (1994) in the steady state

1. Guess K/L. (Because ` process is exogenous, L can
independently computed by computing the stationary
distribution of `.) Compute w and r.

2. Perform the consumer’s optimization.

3. Using the decision rule a0(a, `) and the transition probabilities
for `0, one can create the transition matrix (a, `) ! (a0, `0).
Then the stationary distribution of (a, `) can be computed.

4. Using the stationary distribution, compute the sums K and L.
Compare the resulting K/L with the guess in step 1.

5. If the guess was correct, we found an equilibrium. If not,
revise the guess and repeat from step 1 until convergence.

See Mukoyama (2019) and Mukoyama (2020) for details.
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How to compute the stationary distribution

Given the decision rule a0 = a0(a, `) and the transition probability
⇡``0 , how do we compute the matrix (or vector) of populations on
the a, ` grids, {p(ai, `j)} (where

P
i

P
j p(ai, `j) = 1), that is

invariant? There are multiple approaches.

1. Simulate. Start from some (a, `). Obtain a0 from the decision
rule (choose i where a0 is closest), generate a random number
and obtain `0. Simulate many people.

2. Think of p(ai, `j) as a histogram. Move ⇡`j`k fraction (that
is, ⇡`j`kp(ai, `j) units) to (a0(ai, `j), `k) grid. If a0(ai, `j) is
not on the grid, distribute appropriately. (For example, if
a0(ai, `j) is in the midpoint of am and am+1, give half to am
and half to am+1.) Repeat until p(ai, `j) settle. See Heer and
Maußner (2005) and Young (2010) for details.

3. Use the matrix representation p = Ap and find p that satisfy
(A� I)p = 0.

I usually use the second one.
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Policy experiment (Mukoyama, 2020)

Let us work with a policy experiment. Here, think of a wealth
tax—the government take away ⌧at from the consumers (where
⌧ > 0) and transfer back in lump-sum manner (the transfer is Tt).
I Before time 0, assume that the consumers believe that the tax

is 0 forever.
I At time 0, suddenly and unexpectedly (an “MIT shock”), the

tax switches to a positive number ⌧ , and it is announced that
it will stay at ⌧ forever.

I The new problem:

Vt(at, `t) = max
ct,at+1

U(ct) + �E[Vt+1(at+1, `t+1)|`t]

subject to

ct + at+1 = wt`t + (1 + rt�⌧t � �)at + Tt

and
at+1 � b.



Policy experiment

I Starting from time 0, Kt/Lt experiences a gradual transition,
implying that the prices wt and rt are time-dependent.
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Computation

To compute the transition dynamics, take the following steps.

1. Compute the steady states of ⌧t = 0 (initial steady state) and
⌧t = ⌧ (final steady state) separately.

2. Assume that the economy is in the final steady state at
su�ciently far future (e.g. t = 100).

3. Guess the path of Kt/Lt for t = 1, ..., 99.
4. Starting from the final steady state, solve the optimization

backwards. That is:
4.1 Using the value function of the final steady state as V100(a, `)

(and using the w99 and r99 from the guessed K99/L99), solve
the Bellman equation for V99(a, `).

4.2 Using the V99(a, `), solve the Bellman equation for V98(a, `).
Go back until V0(a, `). Record all decision rules.

5. Starting from the initial steady state and using above decision
rules, compute the distribution of (at, `t) forward, for
t = 1, 2, ..., 99. (Use simulation or histograms.)

6. Compute Kt/Lt from the above (at, `t). Compare with the
guess. If the guess was wrong, update and repeat.



Step # L .

① Compute
the steady team with

TEO (start )

② compute the seedy
seam wew

#(end)
new s .S .



100
•
100

SUPER Guess we ,
rt

. Tt ⇒ { Et )! , ft )#ogeranium p or

E:

Assume then at E-Coo c the economy
in in the h§ shaky sore

✓+ Catch) - max UCCtltfef.tl#i4aeeidtedHIf'"

f÷⇒÷:*!..⇒÷⇐¥*zoWEW Bisi
✓qg Catalase) = - -

. - Ugg
y Ms

Vas Tas↳
a:p::
"::÷.im : can

from t=O



Ti

¥0 f ttoo

i.
. . .

"
E
.

..

¥
or...⇒ compare we theGuess , repeat



Evaluating the welfare e↵ect of taxation

I One question we might ask is: Are consumers better o↵ with
the policy change?

I In this environment, the welfare e↵ects are di↵erent across
individuals.

I One popularly used metric is the consumption equivalence:
for consumer i, find �(i) that satisfies

E0

" 1X

t=0

�tU((1 + �(i))ct(i)
⌧t=0)

#
= E0
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⌧t=⌧ )

#
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when �(i) > 0, the consumer is better o↵ with the new policy.

I It is easy to compute: for U(c) = log(c),

�(i) = exp[V ⌧t=⌧ (a(i), `(i))� V ⌧t=0
1 (a(i), `(i))]� 1.D B
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Evaluating the welfare e↵ect of taxation

Below is an example: U(c) = log(c), � = 0.96, ↵ = 0.36,
� = 0.08, b = 0. `t follows log(`t) = ⇢ log(`t�1) + �(1� ⇢2)1/2✏t,
where ✏t follows N(0, 1). ⇢ = 0.9 and � = 0.4.
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Business cycles

I The application to business cycles (aggregate shocks) is very
important, not just because business cycles are important, but
because over the cycle, the “micro shocks” and “macro
shocks” are interacted.
• Major “micro” labor market events, such as
unemployment and job-to-job transitions, are strongly
correlated to macro cycles.

• Firms’ entry and exit are also correlated with macro
conditions.

I Examples:
• Costs of business cycles
• Labor market flows
• Various policies (including monetary and fiscal policies)



Business cycles

The di�culty is now that the distribution of idiosyncratic state
(e.g. the distribution of a) moves around over time. The
distribution of a matters for the distribution of a0, which
determines K 0. Knowing K 0 is important for each consumer,
because K is a state variable today (thus K 0 is the state variable
tomorrow) through r(K/L) and w(K/L). Therefore, in principle,
the distribution of a is the state variable for the consumer.
Because the distribution of a is a large object, we need some
technique for computation.

I The classic computational method by Krusell and Smith
(1998). Assume that the consumer only keep track of a few
moments of the distribution. (Skip today)

I Use the deterministic dynamics above (Boppart et al., 2018):
explained below

I Many, many techniques recently developed (skip today)



Using MIT shock to compute business cycle statistics

I Think of, for example, a shock to TFP, as in the RBC model.
Let the deterministic time-series of the TFP zt be
{z̄ exp(�), z̄ exp(⇢�), z̄ exp(⇢2�)...}, where z̄ is the
steady-state value, � and ⇢ are the AR(1) standard deviation
and the persistence of shock. Note that the economy will go
back to the original steady state, instead of moving to a new
steady state.

I One can compute the deterministic transition dynamics
following the “backward-forward” method above. Store the
values of variable of interest, as log-deviations from the
steady-state value. For example, for GDP, y(0), y(1), y(2), ....

I Simulate the economy. Draw shocks from N(0, 1). Suppose
the shock is ✏0, ✏1, ✏2, ... Then the GDP at time t can be
computed as

Yt = Ȳ exp

 1X

m=0

y(m)✏t�m

!
.

(Practically, instead of 1 take a large finite value.)
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Using MIT shock to compute business cycle statistics

Pros and cons:

I Pro: Intuitive and simple to implement. Once the transition
dynamics is computed, simulation can be done many times,
and a larger shock can be accommodated by simply scaling up
in the simulation.

I Pro: Many di↵erent shocks can be accommodated, by just
computing the transition dynamics separately, simulating
multiple shocks simultaneously, and adding up the response to
di↵erent shocks (see, for example, Krusell et al., 2020).

I Pro: Nonlinear responses to shocks are incorporated.

I Con: The e↵ect of uncertainty on the steady-state level is not
accounted for.

I Con: No obvious way to verify if the approximation by the
deterministic sequence (and scaling up and down with ✏) is
accurate.



Recap of the lectures

I Last week, I introduced the basics: the main motivations to
work with incomplete-market models and the Huggett model
(asset pricing).

I Today, I covered the computation of Aiyagari model, how to
work with the transitional dynamics after a policy change, and
move ahead to the business cycle analysis.
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