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Firm dynamics with frictional labor market

I A natural question in the labor market is how the changes in

labor demand, induced by the changes in firm dynamics,

would a↵ect unemployment.

I To answer that kind of questions, unemployment has to be

modeled together with firm dynamics.

I Elsby and Michaels (2013) provide a basic framework with

heterogeneous firms and Diamond-Mortensen-Pissarides

(DMP) type labor market frictions.

I There can be other ways of modeling firm dynamics with

labor market frictions. Example: Kaas and Kircher (2015).



Bellman equation for a firm

⇧(n�1, x) = max
n

⇢
pxF (n)� w(n, x)n� c

q
�n1+ + �

Z
⇧(n, x0)dG

�

I p is aggregate state, x is individual firm’s productivity, F (n) is
a strictly increasing and concave production function.

I Later we’ll see why the wage w(n, x) is a function of n and x.

I The third term is the vacancy cost. c is the cost for posting

vacancy. One unit of vacancy converts into 1/q units of new

hires. �n = n� n�1 is the increase in employment.

I Vacancy cost is necessary only when �n > 0. 1+ = 1 if and

only if �n > 0. Otherwise 1+ = 0.
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Wage bargaining

I In a DMP model, wages are bargained because a firm and a

worker are in a bilateral monopoly situation. Potentially any

wage can realize between the upper bound (where the firm is

indi↵erent between keeping the worker and separating) and

the lower bound (where the worker is indi↵erent between

staying and separating).

I In the standard model, the bargaining is one-to-one, and the

most common assumption is the (generalized) Nash

bargaining:

max
w

(W̃ (w)� U)�(J̃(w)� V )1��
.

� 2 (0, 1) represents the worker’s bargaining power.

I With linear utility, the wage solves the proportional sharing

rule:

(1� �)(W̃ (w)� U) = �(J̃(w)� V ).
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Wage bargaining

I With multi-worker firms plus decreasing returns, the issue is

more complex. The reason is that when one worker (threatens

to) leave the bargaining, the other workers’ productivity is

also a↵ected.

I A standard solution, also in Elsby and Michaels (2013), is to

assume that a marginal worker Nash bargains with the firm.

This assumption can be justified by considering a game

between the firm and workers (similarly to justifying a

one-to-one Nash bargaining with Rubinstein-Stahl game with

alternating o↵ers). The standard reference is Stole and

Zwiebel (1996). Also see Brügemann et al. (2019).

I In Elsby and Michaels (2013), the wage satisfies

(1� ⌘)[W (n, x)�⌥] = ⌘J(n, x),

where the value functions are defined at the margin.
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The marginal worker’s value functions

I For the firm:

J(n, x) = pxF
0(n)� w(n, x)� wn(n, x)n+ �D(n, x)

where D(n, x) =
R
⇧n(n, x0)dG(x0|x) is the marginal (present

value) future profit from one more worker. Note the term

wnn: this term turns out to be negative. Thus there is an

extra incentive for a firm to hire more workers.

I For the worker:

W (n, x) = w(n, x) + �E[s⌥0 + (1� s)W (n0
, x
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for the employed and
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Wages

I The wage solves the di↵erential equation

w(n, x) = ⌘
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I In Cobb-Douglas case, we can have a closed-form solution:
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Distribution

I Given the stochastic process on x, one can compute the

stationary distribution in (x, n). Let the distribution with

respect to n be H(n).

I Elsby and Michaels (2013) further characterizes H(n) for a
specific stochastic process on x.
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General equilibrium

I The general equilibrium object is ✓ = V/U . ✓ dictates the

amount of job creation and job destruction, and it has to be

consistent with the total labor force, L.

I First, for a given U , ✓ has to satisfy

Z
ndH(n; ✓) + U = L

I Second, in the steady state,

S(✓) = f(✓)U.

I Therefore, in the steady state, ✓ has to satisfy

Z
ndH(n; ✓) +

S(✓)

f(✓)
= L.
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Entry and exit of firms

I One can extend the model to include endogenous entry and

exit. The extension is fairly straightforward (I think).

I In the beginning of every period (before knowing new x), the

incumbent draws a operation cost , which is an iid random

variable. If  >
R
⇧(n�1, x)dG(x|x�1), the firm exits. The

continuation value will become

�
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and the exit threshold 
⇤
is determined by the firm.

I For entry, a natural assumption is the entry rate being

determined by the free-entry condition

Z
⇧(0, x)d⌫(x) = ce,

where ce is the entry cost.
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