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1 The saving problem

In this note, we demonstrate the relationship between continuous-time Maximum Principle

(optimal control) and continuous-time Dynamic Programming using a simple saving problem.

The problem is

max
c(t),a(t)

∫ ∞
0

e−ρtu(c(t))dt

subject to

ȧ(t) = ra(t)− c(t),

where c(t) is consumption at time t, a(t) is asset at time t, ρ > 0 is the discount rate, r > 0

is the interest rate, and u(·) is an increasing and concave utility function. ȧ(t) = da(t)/dt

represents the time derivative.

2 Maximum Principle

For optimization using Maximum Principle, two alternative formulations can be used. The

first method uses the present-value Hamiltonian:

Hp(t) ≡ e−ρtu(c(t)) + λ(t)(ra(t)− c(t)),

where λ(t) is the costate variable. The first-order conditions for this formulation are

∂Hp(t)

∂c(t)
= 0

and
∂Hp(t)

∂a(t)
+ λ̇(t) = 0.

(The necessary condition for optimality includes the transversality condition, but we omit it

here.)

The second uses the current-value Hamiltonian:

Hc(t) = u(c(t)) + µ(t)(ra(t)− c(t)),
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where µ(t) is the costate variable in this case. The first-order conditions are

∂Hc(t)

∂c(t)
= 0 (1)

and
∂Hc(t)

∂a(t)
+ µ̇(t)− ρµ(t) = 0. (2)

It is easy to check that both approaches are equivalent, with the relationship λ(t) = e−ρtµ(t).

Therefore, we will work with the current-value Hamiltonian below. For the saving problem

above, the first-order condition (1) is

u′(c(t)) = µ(t) (3)

and (2) is

rµ(t) + µ̇(t)− ρµ(t) = 0. (4)

3 Dynamic Programming

We will start by defining the value function

V (a(t)) =

∫ ∞
t

u(c∗(t))dt,

where c∗(t) is the optimal value of c(t). To (heuristically) derive the first-order condition,

we start by considering a discrete-time formulation with period length ∆. Later we will take

the limit of ∆→ 0. The discrete-time Bellman equation is

V (a(t)) = max
c(t),a(t+∆)

u(c(t))∆ +
1

1 + ρ∆
V (a(t+ ∆)) (5)

subject to

a(t+ ∆) = (1 + r∆)a(t)− c(t)∆.

The first-order condition is

u′(c(t))∆ =
1

1 + ρ∆
V ′(a(t+ ∆))∆.

Dividing both sides by ∆ and take ∆→ 0, we obtain

u′(c(t)) = V ′(a(t)). (6)

The Bellman equation (5) can be rewritten as (with optimally chosen c(t) and a(t))

V (a(t+ ∆))− V (a(t))

∆
+ u(c(t))− ρ

1 + ρ∆
V (a(t+ ∆)) = 0.
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Taking the limit of ∆→ 0,

V ′(a(t))ȧ(t) + u(c(t))− ρV (a(t)) = 0. (7)

This equation is the Hamilton-Jacobi-Bellman (HJB) equation and can be interpreted as an

“asset equation,” that is, rewriting

ρV (a(t))dt = u(c(t))dt+ V ′(a(t))ȧ(t)dt,

the left-hand side is the required return of an asset that has the value of V (a(t)) over the

time period dt, and the right-hand side is the income gain u(c(t))dt plus the capital gain

V ′(a(t))ȧ(t)dt.

Replacing ȧ(t) in (7) by ra(t)− c(t), we obtain

rV ′(a(t))a(t)− V ′(a(t))c(t) + u(c(t))− ρV (a(t)) = 0.

This equation has to hold for all a(t), and thus we can take the derivative with respect to

a(t) on both sides:

rV ′′(a(t))a(t) + rV ′(a(t))− V ′′(a(t))c(t)− V ′(a(t))
dc(t)

da(t)
+ u′(c(t))

dc(t)

da(t)
− ρV ′(a(t)) = 0.

Rearranging using ȧ(t) = ra(t)− c(t) and (6),

rV ′(a(t)) + V ′′(a(t))ȧ(t)− ρV ′(a(t)) = 0. (8)

Now we can see the correspondence between the Maximum Principle equations ((3) and (4))

and the Dynamic Programming equations ((6) and (8)) with µ(t) = V ′(a(t)).
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