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1 The saving problem

In this note, we demonstrate the relationship between continuous-time Maximum Principle
(optimal control) and continuous-time Dynamic Programming using a simple saving problem.

The problem is
. / ePlu(c(t))dt
0

c(t),a(t

subject to
a(t) = ra(t) — c(t),

where ¢(t) is consumption at time ¢, a(t) is asset at time ¢, p > 0 is the discount rate, r > 0
is the interest rate, and w(-) is an increasing and concave utility function. a(t) = da(t)/dt
represents the time derivative.

2 Maximum Principle

For optimization using Maximum Principle, two alternative formulations can be used. The
first method uses the present-value Hamiltonian:

HP(t) = e Plu(c(t)) + Mt)(ra(t) — c(t)),

where A(t) is the costate variable. The first-order conditions for this formulation are

OHP(t)
de(t)
and oHP(1)
t .
Alt) = 0.
o) TAW
(The necessary condition for optimality includes the transversality condition, but we omit it
here.)

The second uses the current-value Hamiltonian:

HE(t) = u(e(t)) + p(t)(ra(t) — c(t)),



where p(t) is the costate variable in this case. The first-order conditions are

OH*(t)
dc(t)

=0 (1)

and
OH®(t)

da(t)
It is easy to check that both approaches are equivalent, with the relationship \(t) = e P u(t).

+ ju(t) = pua(t) = 0. (2)

Therefore, we will work with the current-value Hamiltonian below. For the saving problem
above, the first-order condition (1) is

u'(c(t)) = p(t) 3)
and (2) is
ru(t) + A(t) — pu(t) = 0. (4)
3 Dynamic Programming

We will start by defining the value function

where ¢*(t) is the optimal value of ¢(t). To (heuristically) derive the first-order condition,
we start by considering a discrete-time formulation with period length A. Later we will take
the limit of A — 0. The discrete-time Bellman equation is

Via(t)) = max u(c(t))A+

Via(t+ A 5
e T oa (alt+a) ()

subject to
a(t+A)=(1+rA)a(t) — c(t)A.

The first-order condition is

() A V/(a(t + A))A.

T 1+ pA
Dividing both sides by A and take A — 0, we obtain

u'(c(t)) = V'(a(t)). (6)
The Bellman equation (5) can be rewritten as (with optimally chosen ¢(¢) and a(t))

V(a(t+A)) —V(a(t))
A

+u(e(t) - 1 +'0pAV(a(t +A)) =0.



Taking the limit of A — 0,

V'(a(t))a(t) + u(c(t)) — pV (a(t)) = 0. (7)

This equation is the Hamilton-Jacobi-Bellman (HJB) equation and can be interpreted as an
“asset equation,” that is, rewriting

pV (a(t))dt = u(c(t))dt + V'(a(t))a(t)dt,

the left-hand side is the required return of an asset that has the value of V(a(t)) over the
time period dt, and the right-hand side is the income gain u(c(t))dt plus the capital gain
V'(a(t))a(t)dt.

Replacing a(t) in (7) by ra(t) — ¢(t), we obtain

rV'(a(t))a(t) — V'(a(t))e(t) + u(c(t)) — pV(a(t)) = 0.

This equation has to hold for all a(t), and thus we can take the derivative with respect to
a(t) on both sides:

PV alt))alt) + V' (a(t) = V' al)elt) = VV(ale) G + W) G — oV (a(0) =0
Rearranging using a(t) = ra(t) — ¢(t) and (6),
PV (alt) + V" (al1))alt) V" (alt)) = 0. 0

Now we can see the correspondence between the Maximum Principle equations ((3) and (4))
and the Dynamic Programming equations ((6) and (8)) with u(t) = V'(a(t)).
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