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1 No labor-leisure decision

This note works out the intuition of the real business cycle dynamics using the continuous-

time Ramsey model. In particular, we interpret booms and recessions as temporary technol-

ogy shocks that are unanticipated (“MIT shocks”). First, in this section, we abstract from

labor-leisure choice of consumers and focus on the propagation of shocks through capital

accumulation.

As the market equilibrium is Pareto efficient in the following economy, we consider the

benevolent social planner’s problem. Suppose that the household utility is

U =

∫ ∞
0

e−ρt log(c(t))dt,

where c(t) is consumption at time t, and ρ > 0. The feasibility constraint is

k̇(t) = z(t)k(t)α − δk(t),

where z(t) is the total factor productivity (TFP) and k(t) is capital stock. α is a parameter

between 0 and 1, and δ > 0 is the depreciation rate. The standard procedure for dynamic

optimization leads to the Euler equation

ċ(t)

c(t)
= αz(t)k(t)α−1 − (δ + ρ).

The dynamics of the model is described in Figure 1. The red curve is the saddle path that

c(t) and k(t) follow during the transition dynamics.

Suppose that the economy is in the steady state with constant z(t) = z. Now, consider an

unforeseen positive technology shock. At time t0, z(t) temporarily increases to z′ > z, during

the time period between t0 to t1. This temporary shock is not anticipated by the consumers

and firms before t0 (an “MIT shock”), but the consumers and firms have perfect foresight

from the time t0 on. In particular, they are aware that z(t) will go back to z after t1. The

new dynamics is analyzed in Figure 2. In the phase diagram, the k̇(t) = 0 curve switches to

the blue curve between t0 and t1. The ċ(t) = 0 line shifts to the right. The consumption
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Figure 3: time series of variables

jumps from point A at time t0, so that at time t1, the combination of c(t1) and k(t1) is on

the red saddle path.

At t0, consumption jumps up. Between t0 and t1, the consumers enjoy a higher consump-

tion level with an increasing profile (it is possible to start declining before time t1), and they

also accumulate capital. After t1, consumption starts declining (if it had not already), grad-

ually converging to the original level. Meanwhile, the consumers decumulate the asset and

k(t) converges to the original level. Figure 3 describes the time series of relevant variables.

The time series of y(t) reflects the dynamics of both z(t) and k(t).

We can see from the time series of y(t) that there are impulse and propagation. The initial

jump of y(t) is due to the impulse of increase in z(t). Then k(t) plays a role in propagation.

Net investment (slope of k(t)) jumps up at t0 and jumps down at t1 to a negative level,

and eventually converges back to zero. We can see the comovement of y(t), c(t), and net

investment k̇(t). Consumption is smoother than GDP: some of the increase in income is

saved, so that the asset (capital) can be used for the extra consumption after z(t) goes back

to the original level.

2 With labor-leisure decision

In this section, we consider the same setting, but with the labor-leisure decision. The pro-

duction function is now

y(t) = z(t)k(t)αn(t)1−α.
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Let the momentary utility function be

u(c(t), n(t)) = log(c(t)) − ξ
n(t)

1+ 1
η

1 + 1
η

,

where ξ > 0 and η > 0. The static first-order condition is

ξn(t)
1
η =

w(t)

c(t)
,

where w(t) is the marginal product of capital, corresponding to wages in the market economy.

Thus,

ξn(t)
1
η =

1

c(t)
(1 − α)z(t)

(
k(t)

n(t)

)α
,

which can be solved as

n(t) =

(
(1 − α)z(t)k(t)α

ξc(t)

) η
1+αη

.

Therefore, the production function can be rewritten as

y(t) = z(t)k(t)α
(

(1 − α)z(t)k(t)α

ξc(t)

) (1−α)η
1+αη

= γz(t)
1+η
1+αη k(t)

(1+η)α
1+αη c(t)

− (1−α)η
1+αη ,

where

γ ≡
(

1 − α

ξ

) (1−α)η
1+αη

.

From the intertemporal optimization, we can derive a similar Euler equation as in the

previous section.

ċ(t)

c(t)
= αz(t)k(t)α−1n(t)1−α − (δ + ρ) = αγz(t)

1+η
1+αη (k(t)c(t)η)

− 1−α
1+αη − (δ + ρ).

The dynamics of capital is dictated by

k̇(t) = γz(t)
1+η
1+αη k(t)

(1+η)α
1+αη c(t)

− (1−α)η
1+αη − δk(t) − c(t).

For simplicity, consider the example: δ = 0, α = 1/3, and η = 1:

ċ(t)

c(t)
=

1

3
γz(t)

3
2 (k(t)c(t))−

1
2 − ρ

k̇(t) = γz(t)
3
2k(t)

1
2 c(t)−

1
2 − c(t)

n(t) = γ
3
2 z(t)

3
4k(t)

1
4 c(t)−

3
4 .

The first two differential equations can be drawn as the phase diagram in Figure 4. This

time, the ċ(t) = 0 curve is not a straight line.
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Figure 6: time series of variables

Figure 5 describes what happens when z(t) goes up temporarily, as in the previous section.

The ċ(t) = 0 curve and k̇(t) = 0 curve shift to the blue ones, in the same direction as in the

previous section.

In this example, when z(t) goes up by 1% (permanently), the new steady state (the

crossing point of two blue curves) features k(t) and c(t) both increasing by 1.5%. n(t) stays

the same in the new steady state, reflecting the balanced-growth preferences. With 1%

increase in z(t), c(t) has to go up by 3% with given k(t) for ċ(t) to be equal to zero. For the

second equation, a 1% increase in z(t) is balanced by a 1% increase in c(t) for given k(t) to

keep k̇(t) to be equal to zero. These magnitudes are reflected in the shifts of blue curves in

the figure.

As we can see from the phase diagram, the jump of c(t) with the temporary shock is less

than 1%. The subsequent dynamics of c(t) and k(t) are similar to the previous section.

The dynamics of n(t) involves some ambiguity. It jumps at t0; because z(t) jumps up

more than c(t) does, n(t) jumps up at the impact, but the magnitude is less than 3/4 of the

jump in z(t). Because c(t) and k(t) both move up gradually between t0 and t1, n(t) can go

up or down during this period. At time t1, n(t) jumps down (reflecting the jump of z(t), this

time exactly 3/4 of z(t) jump), but it can jump to above or below the original level. Then
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n(t) gradually converges to the original level.

The dynamics of y(t) inherit the jumps of z(t) and n(t) initially, and then the movement

of y(t) is dictated by the combinations of k(t) and n(t) dynamics between t0 and t1. At time

t1, y(t) jumps down, reflecting the jumps of z(t) and n(t).

In this section, n(t) is added as an extra moving part, but its main role is to magnify

the effect of z(t) by jumping up and down in the same direction as z(t). It may may have

movements between t0 and t1 and after t1, but it does not necessarily add a powerful channel

of propagation. Overall, the dynamics of y(t) is dictated by the dynamics of z(t) (and n(t),

which has a magnifying role), and k(t) provides a slow-moving propagation force. Given that

k(t) moves slowly, the dynamics of y(t) over the business cycle will look quite similar to the

dynamics of z(t).
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