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This note presents the analytical solution for a special case in the continuous-time Solow

model, based on Sørensen and Whitta-Jacobsen (2010). This is an exact solution, and makes

it clear that the economy goes closer and closer to the steady state, but it never reaches it

in a finite time.

1 Setup

There is a representative firm producing with the constant-returns-to-scale Cobb-Douglas

technology

Y (t) = K(t)α(A(t)L(t))1−α, (1)

where Y (t) is the aggregate output, K(t) is capital stock, A(t) is the labor productivity

(technology), and L(t) is labor (population). α ∈ (0, 1).

The capital stock in the economy evolves following the differential equation

K̇(t) = I(t)− δK(t), (2)

where I(t) is investment and δ > 0 is the depreciation rate of capital. K̇(t) ≡ dK(t)/dt is

the time derivative.

The consumers save a fraction s ∈ (0, 1) of their income:

S(t) = sY (t), (3)

where, in the goods market equilibrium, saving S(t) equals investment.

S(t) = I(t). (4)

Using (1), (3), and (4), the equation (2) can be rewritten as

K̇(t) = sK(t)α(A(t)L(t))1−α − δK(t). (5)

The population L(t) is assumed to grow at the rate n and the technology A(t) grows at

the rate x:
L̇(t)

L(t)
= n (6)
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and
Ȧ(t)

A(t)
= x. (7)

Let us define the variable k(t) by

k(t) ≡ K(t)

A(t)L(t)
. (8)

This definition implies
k̇(t)

k(t)
=
K̇(t)

K(t)
− Ȧ(t)

A(t)
− L̇(t)

L(t)
.

Using (5), (6), and (7), this equation can be rewritten as:

k̇(t)

k(t)
=
sK(t)α(A(t)L(t))1−α − δK(t)

K(t)
− x− n.

Rearranging (and using the definition (8), this equation is transformed to

k̇(t) = sk(t)α − (n+ x+ δ)k(t).

This is a differential equation with variable k(t) only. We will work with this fundamental

Solow equation.

2 Analytical solution

Repeating the fundamental Solow equation,

k̇(t) = sk(t)α − (n+ x+ δ)k(t). (9)

First, note that the steady-state (balanced-growth) value of k(t), k∗, can be solved analyti-

cally from

0 = s(k∗)α − (n+ x+ δ)k∗.

The solution is

k∗ =

(
s

n+ x+ δ

) 1
1−α

. (10)

Define a variable z(t) as

z(t) ≡ k(t)1−α. (11)

In terms of the growth rates,
ż(t)

z(t)
= (1− α)

k̇(t)

k(t)
.

Plugging (9) into the right-hand side,

ż(t)

z(t)
= (1− α)[sk(t)α−1 − (n+ x+ δ)].
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Noting that k(t)α−1 = 1/z(t), this equation implies

ż(t) = (1− α)s− (1− α)(n+ x+ δ)z(t). (12)

This is a linear differential equation that can be solved easily. Let

λ ≡ (1− α)(n+ x+ δ).

Guess that the solution takes the form

z(t) = A+ Be−λt. (13)

To determine A and B, first, denoting the initial value of z(t) as z0,

z0 = A+ B

has to hold. Second, because we know that z(t)→ z∗ as t→∞, where z∗ is the steady-state

value of z(t) (from (10), z∗ = s/(n+ x+ δ)),

z∗ = A

has to hold.1 Therefore, (13) has to be rewritten as

z(t) = z∗ + (z0 − z∗)e−λt.

One can then verify that this solution indeed satisfies the differential equation (12).

Therefore, from the definition of z(t) in (11), the analytical solution of (9) is

k(t) =
{

(k∗)1−α +
[
k1−α0 − (k∗)1−α

]
e−λt

} 1
1−α

,

where k0 is the initial value of k(t) and k∗ is defined in (10). It can be seen that when

k0 6= k∗, the term [k1−α0 − (k∗)1−α]e−λt becomes closer and closer to zero as time passes by,

but never reaches zero in a finite time.
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1The second condition can alternatively be obtained by plugging (13) into (12) and compare coefficients.
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