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This note presents the analytical solution for a special case in the continuous-time Solow
model, based on Sgrensen and Whitta-Jacobsen (2010). This is an exact solution, and makes
it clear that the economy goes closer and closer to the steady state, but it never reaches it

in a finite time.

1 Setup

There is a representative firm producing with the constant-returns-to-scale Cobb-Douglas

technology
Y(t) = K(t)*(A(t) L)', (1)

where Y'(t) is the aggregate output, K (t) is capital stock, A(t) is the labor productivity
(technology), and L(t) is labor (population). « € (0,1).
The capital stock in the economy evolves following the differential equation

K(t) = I(t) — 6K (t), (2)

where I(t) is investment and 6§ > 0 is the depreciation rate of capital. K(t) = dK(t)/dt is
the time derivative.
The consumers save a fraction s € (0, 1) of their income:

S(t) = sY (), (3)

where, in the goods market equilibrium, saving S(t) equals investment.

Using (1), (3), and (4), the equation (2) can be rewritten as

K(t) = sK(6)*(A(t)L(1))'~* — 6K (t). (5)
The population L(t) is assumed to grow at the rate n and the technology A(t) grows at
the rate x: .
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Let us define the variable k(t) by
__K@®)
k(t) = A(t)L(t) ()

This definition implies . ' ' ‘
k(t)  K()  A(t) L)
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Using (5), (6), and (7), this equation can be rewritten as:
E(t)  sK(£)*(A#)L(t) ™ — 6K (t)

= — T —nNn.

k(1) K(t)

Rearranging (and using the definition (8), this equation is transformed to
k(t) = sk(t)® — (n + z + 6)k(¢).
This is a differential equation with variable k(¢) only. We will work with this fundamental
Solow equation.
2 Analytical solution
Repeating the fundamental Solow equation,
k(t) = sk(t)® — (n + z + 6)k(2). (9)

First, note that the steady-state (balanced-growth) value of k(t), k*, can be solved analyti-
cally from
0=s(k")* = (n+x+)k™

The solution is

Define a variable z(t) as

In terms of the growth rates,

2(t) k(t)
Plugging (9) into the right-hand side,
@ =(1-a)[sk®)* ' = (n+z
B = (= )fsk()"! — (n 2+ 9



Noting that k(t)*~! = 1/z(t), this equation implies
2t)=1—-a)s—(1—a)(n+x+0)z(t). (12)
This is a linear differential equation that can be solved easily. Let
A=(1—-a)(n+2x+9).
Guess that the solution takes the form
2(t) = A+ Be™ M. (13)
To determine A and B, first, denoting the initial value of z(t) as zp,
2=A+DB

has to hold. Second, because we know that z(t) — 2z* as t — oo, where z* is the steady-state
value of z(t) (from (10), z* = s/(n + x +9)),

ZF=A
has to hold.! Therefore, (13) has to be rewritten as
2(t) = 2* + (20 — 2*)e ™M,

One can then verify that this solution indeed satisfies the differential equation (12).
Therefore, from the definition of z(¢) in (11), the analytical solution of (9) is

k1) = {61 4 [k 2 — (k)] ) 7

where ko is the initial value of k(¢) and k* is defined in (10). It can be seen that when
ko # k*, the term [ky~® — (k*)1~*]e* becomes closer and closer to zero as time passes by,
but never reaches zero in a finite time.
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!The second condition can alternatively be obtained by plugging (13) into (12) and compare coefficients.
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