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When I started learning statistics, it was difficult to connect the descriptive statistics to

statistical inference and testing. When there are 40 people in the classroom and I have data

on their heights, are there more to analyze than transforming these 40 numbers, comput-

ing mean, variance, and so on? I understand that if these numbers are actually randomly

sampled from a large population and if I am interested in the property of the whole pop-

ulation, it is possible to draw statistical conclusions using probability theory, because the

random sampling is a probabilistic event. But these 40 people in the classroom are already

there, and we didn’t sample them randomly—what is there to infer from 40 numbers using

probability theory, if the “whole population” we care is already there? Why do we have to

estimate an unnatural thing, such as the “population mean” and the “population variance,”

other than the mean and variance of the heights of these 40 people? Why do we care about

the standard errors of these estimates, when we don’t even do the sampling once again?

Reading Kiyoshi Ito’s essay on the history of probability theory, I realized that the key

historical event for this connection was Bernoulli’s proof of the Law of Large Numbers. If

we flip the coin 40 times, the particular combination of heads and tails is a statistic, much

like the heights in the classroom. Bernoulli showed, however, if we keep flipping coin (even

if it doesn’t occur in reality), the average fraction of heads can approximate the “true”

probability of heads x, which represents the (hidden) property of the coin. Now turning

around and putting this hidden property x in the center stage, he could represent the coin-

flipping of 40 times as the outcome of the binomial distribution. The logic is: because x can

(in principle) be recovered from the descriptive statistics (with the help of the Law of the

Large Numbers), why don’t we use this x to characterize the process of how these statistics

are generated, even though we don’t really see x? This logic allows us to jump from “what

we see (40 flips) is the real thing” to “x is the real thing, and the 40 flips are merely its

realizations.” This “turning around” is a simple form of probabilistic modeling, which seems

natural in the context of coin-flipping. (It is not only natural, but also elegant and useful.)

It feels natural because we know that the model is correct—we do know that there is an

actual coin behind the {head, tail} events that possesses this property x. x is real, because

it is embodied in the coin. And the Law of Large Numbers guarantees that x is not merely

a fiction that allows for an elegant mathematical representation, but something that can be

seen as the reality if the number of flips is sufficiently large.
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Going back to the classroom example, by (fictitiously) imagining a hidden property of an

abstract concept of height (e.g. a probability distribution that it follows), these 40 numbers

can be mathematically represented with the language of the probability theory. The key, I

believe, is that it can be—it doesn’t have to be. It is perfectly fine to stop at the descriptive

statistics if we don’t want to commit to any model. To have a statistical inference, however, we

have to imagine a model, where the classroom people’s heights are drawn from a distribution

that possesses some hidden properties (like x above). The question is: can we believe in such

a model, when we don’t see something (like coin above) that embodies these properties?

The reason of my initial uneasiness in the connection between descriptive statistics and

the inference was probably that, when the probabilistic model is unnatural (we don’t draw

people randomly to put in the classroom), this “turning around” of reality and the hidden

parameter feels forced and unnatural. Even worse, we can’t “draw” many times and use the

Law of Large Numbers to see that these distributional properties are something real—there

are only limited number of students in the world! This uneasiness is also a source of issues

that often is associated with the “frequentist inference”—we cannot conduct this “turning

around” without a complete faith in the underlying probabilistic model. Now I realize that

when I felt uneasy, it was just that I felt that the statistical model behind the inference was

not natural. It is this “unrealistic” (the “population” is not always something real, you just

have to “believe in” its existence) feature of the frequentist model that makes it difficult for

the initial learner to absorb the concept of the statistical inference.
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