Weitzman (1976)

Toshihiko Mukoyama

November 2021

This note goes over Weitzman's (1976) basic result. Consider an economy with a consumption good and a capital good. Both goods are produced by capital. Consider the net national product (NNP) $Y(t)$ be defined as:

$$
\begin{equation*}
Y(t) \equiv C(t)+p(t) I(t) \tag{1}
\end{equation*}
$$

where $Y(t)$ is output (NNP), $C(t)$ is (aggregate) consumption, $p(t)$ is the relative price of investment good, and $I(t)$ is net investment. Let $K(t)$ be the capital stock. Then

$$
I(t)=\frac{d K(t)}{d t} .
$$

Let the (representative) consumer maximize

$$
\mathbf{U} \equiv \int_{0}^{\infty} e^{-\rho t} C(t) d t
$$

where $\rho>0$ is the discount rate.
The result we will show is that, in the steady-state of the competitive equilibrium,

$$
Y(t)=\rho \int_{t}^{\infty} e^{-\rho(s-t)} C(s) d s .
$$

That is, the NNP represents the (average) present value if consumption. The consumer's budget constraint is

$$
\dot{K}(t)=I(t)
$$

and

$$
\begin{equation*}
Y(K(t))=C(t)+p(t) I(t), \tag{2}
\end{equation*}
$$

where $\dot{K}(t)$ is a shorthand notation of $d K(t) / d t$ and $Y(K(t))$ is the income (capital rental plus the firm ownership, adding up to the entire output). Note that the consumer is a price taker and when calculating how income changes with $K(t)$, the consumer takes $p(t)$ as given. That is,

$$
\begin{equation*}
Y^{\prime}(K(t))=\frac{d C(t)}{d K(t)}+p(t) \frac{d I(t)}{d K(t)} . \tag{3}
\end{equation*}
$$

Setting up the Hamiltonian

$$
H(t) \equiv e^{-\rho t} C(t)+\mu(t) I(t)+\lambda(t)(Y(K(t))-C(t)-p(t) I(t)),
$$

the first-order conditions are

$$
\begin{gathered}
e^{-\rho t}-\lambda(t)=0, \\
\mu(t)-\lambda(t) p(t)=0,
\end{gathered}
$$

and

$$
\lambda(t) Y^{\prime}(K(t))+\dot{\mu}(t)=0 .
$$

Rearranging, we obtain

$$
\begin{equation*}
\dot{p}(t)=\rho p(t)-Y^{\prime}(K(t)) . \tag{4}
\end{equation*}
$$

(This, of course, can also be interpreted as an asset arbitrage equation $\rho p(t)=Y^{\prime}(K(t))+$ $\dot{p}(t)$.)

On the production side, suppose that the consumption good can be produced by technology

$$
C(t)=F\left(K_{C}(t)\right)
$$

and the capital good can be produced by

$$
I(t)=G\left(K_{I}(t)\right) .
$$

Here, $K_{C}(t)$ is the capital stock used for consumption good production and $K_{I}(t)$ is the capital stock used for capital good production. From the capital market clearing,

$$
\begin{equation*}
K_{C}(t)+K_{I}(t)=K(t) \tag{5}
\end{equation*}
$$

holds. The consumption good producer maximizes

$$
C(t)-r(t) K_{C}(t)=F\left(K_{C}(t)\right)-r(t) K_{C}(t),
$$

where $r(t)$ is the rental rate of capital. The capital good producer maximizes

$$
p(t) I(t)-r(t) K_{I}(t)=p(t) G\left(K_{I}(t)\right)-r(t) K_{I}(t) .
$$

The FOCs for both problems imply

$$
\begin{equation*}
F^{\prime}\left(K_{C}(t)\right)=p(t) G^{\prime}\left(K_{I}(t)\right) . \tag{6}
\end{equation*}
$$

Now, differentiate (1) with respect to t :

$$
\begin{equation*}
\frac{d Y(t)}{d t}=\frac{d C(t)}{d t}+p(t) \frac{d I(t)}{d t}+\frac{d p(t)}{d t} I(t) \tag{7}
\end{equation*}
$$

Because

$$
\begin{aligned}
\frac{d C(t)}{d t} & =F^{\prime}\left(K_{C}(t)\right) \frac{d K_{C}(t)}{d t} \\
p(t) \frac{d I(t)}{d t} & =p(t) G^{\prime}\left(K_{I}(t)\right) \frac{d K_{I}(t)}{d t},
\end{aligned}
$$

and (6), together with the fact that (5) implies

$$
\frac{d K_{C}(t)}{d t}+\frac{d K_{I}(t)}{d t}=\frac{d K(t)}{d t}
$$

we obtain

$$
\begin{equation*}
\frac{d C(t)}{d t}+p(t) \frac{d I(t)}{d t}=F^{\prime}\left(K_{C}(t)\right) \frac{d K(t)}{d t}=F^{\prime}\left(K_{C}(t)\right) I(t) . \tag{8}
\end{equation*}
$$

From (4),

$$
\begin{equation*}
\frac{d p(t)}{d t} I(t)=\left[\rho p(t)-Y^{\prime}(K(t))\right] I(t) \tag{9}
\end{equation*}
$$

Note that from (3),

$$
Y^{\prime}(K(t))=\frac{d C(t)}{d K(t)}+p(t) \frac{d I(t)}{d K(t)}=F^{\prime}\left(K_{C}(t)\right) \frac{d K_{C}(t)}{d K(t)}+p(t) G^{\prime}\left(K_{I}(t)\right) \frac{d K_{I}(t)}{d K(t)}
$$

From (5),

$$
\frac{d K_{C}(t)}{d K(t)}+\frac{d K_{I}(t)}{d K(t)}=1
$$

and thus combining with (6) we obtain

$$
Y^{\prime}(K(t))=F^{\prime}\left(K_{C}(t)\right)
$$

Using this relationship, (8), and (9), (7) can be rewritten as

$$
\frac{d Y(t)}{d t}=\rho p(t) I(t)=\rho(Y(t)-C(t))
$$

Solving this differential equation, assuming $\lim _{s \rightarrow \infty} e^{-\rho s} Y(s)=0$, we obtain

$$
Y(t)=\rho \int_{t}^{\infty} e^{-\rho(s-t)} C(s) d s
$$

as desired. The left-hand side (the current NNP) is equal to the (time-average of) the consumer's present value welfare.

To see some intuition, suppose that all future $C(s)$ is constant at $C(t)$. Then $Y(t)=C(t)$, or $I(t)=0$. When $I(t)=0$, the capital stock does not increase or decrease over time, and thus $Y(t)$ is constant over time. The optimal consumption is a constant value at $C(t)$. If $C(s)$ grows over time, $\rho \int_{t}^{\infty} e^{-\rho(s-t)} C(s) d s>C(t)$ and therefore $Y(t)>C(t)$, implying $I(t)>0$. For consumption to grow over time, $Y(t)$ has to increase over time, and to achieve the growth, $I(t)$ has to be positive. Thus, the intuition is that, the NNP $(C(t)+p(t) I(t))$ measures the present value of welfare because the $C(t)$ part measures the consumption level and the $p(t) I(t)$ part measures the future growth potential of consumption.

References

Weitzman, M. L. (1976). On the Welfare Significance of National Product in a Dynamic Economy. Quarterly Journal of Economics 90, 156-162.

