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This note goes over Weitzman’s (1976) basic result. Consider an economy with a consumption

good and a capital good. Both goods are produced by capital. Consider the net national

product (NNP) Y (t) be defined as:

Y (t) ≡ C(t) + p(t)I(t), (1)

where Y (t) is output (NNP), C(t) is (aggregate) consumption, p(t) is the relative price of

investment good, and I(t) is net investment. Let K(t) be the capital stock. Then

I(t) =
dK(t)

dt
.

Let the (representative) consumer maximize

U ≡
∫ ∞
0

e−ρtC(t)dt,

where ρ > 0 is the discount rate.

The result we will show is that, in the steady-state of the competitive equilibrium,

Y (t) = ρ

∫ ∞
t

e−ρ(s−t)C(s)ds.

That is, the NNP represents the (average) present value if consumption. The consumer’s

budget constraint is

K̇(t) = I(t)

and

Y (K(t)) = C(t) + p(t)I(t), (2)

where K̇(t) is a shorthand notation of dK(t)/dt and Y (K(t)) is the income (capital rental

plus the firm ownership, adding up to the entire output). Note that the consumer is a price

taker and when calculating how income changes with K(t), the consumer takes p(t) as given.

That is,

Y ′(K(t)) =
dC(t)

dK(t)
+ p(t)

dI(t)

dK(t)
. (3)

Setting up the Hamiltonian

H(t) ≡ e−ρtC(t) + µ(t)I(t) + λ(t)(Y (K(t)) − C(t) − p(t)I(t)),
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the first-order conditions are

e−ρt − λ(t) = 0,

µ(t) − λ(t)p(t) = 0,

and

λ(t)Y ′(K(t)) + µ̇(t) = 0.

Rearranging, we obtain

ṗ(t) = ρp(t) − Y ′(K(t)). (4)

(This, of course, can also be interpreted as an asset arbitrage equation ρp(t) = Y ′(K(t)) +

ṗ(t).)

On the production side, suppose that the consumption good can be produced by technol-

ogy

C(t) = F (KC(t))

and the capital good can be produced by

I(t) = G(KI(t)).

Here, KC(t) is the capital stock used for consumption good production and KI(t) is the

capital stock used for capital good production. From the capital market clearing,

KC(t) +KI(t) = K(t) (5)

holds. The consumption good producer maximizes

C(t) − r(t)KC(t) = F (KC(t)) − r(t)KC(t),

where r(t) is the rental rate of capital. The capital good producer maximizes

p(t)I(t) − r(t)KI(t) = p(t)G(KI(t)) − r(t)KI(t).

The FOCs for both problems imply

F ′(KC(t)) = p(t)G′(KI(t)). (6)

Now, differentiate (1) with respect to t:

dY (t)

dt
=
dC(t)

dt
+ p(t)

dI(t)

dt
+
dp(t)

dt
I(t). (7)

Because
dC(t)

dt
= F ′(KC(t))

dKC(t)

dt
,

p(t)
dI(t)

dt
= p(t)G′(KI(t))

dKI(t)

dt
,
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and (6), together with the fact that (5) implies

dKC(t)

dt
+
dKI(t)

dt
=
dK(t)

dt
,

we obtain
dC(t)

dt
+ p(t)

dI(t)

dt
= F ′(KC(t))

dK(t)

dt
= F ′(KC(t))I(t). (8)

From (4),
dp(t)

dt
I(t) = [ρp(t) − Y ′(K(t))]I(t). (9)

Note that from (3),

Y ′(K(t)) =
dC(t)

dK(t)
+ p(t)

dI(t)

dK(t)
= F ′(KC(t))

dKC(t)

dK(t)
+ p(t)G′(KI(t))

dKI(t)

dK(t)
.

From (5),
dKC(t)

dK(t)
+
dKI(t)

dK(t)
= 1,

and thus combining with (6) we obtain

Y ′(K(t)) = F ′(KC(t)).

Using this relationship, (8), and (9), (7) can be rewritten as

dY (t)

dt
= ρp(t)I(t) = ρ(Y (t) − C(t)).

Solving this differential equation, assuming lims→∞ e
−ρsY (s) = 0, we obtain

Y (t) = ρ

∫ ∞
t

e−ρ(s−t)C(s)ds

as desired. The left-hand side (the current NNP) is equal to the (time-average of) the

consumer’s present value welfare.

To see some intuition, suppose that all future C(s) is constant at C(t). Then Y (t) = C(t),

or I(t) = 0. When I(t) = 0, the capital stock does not increase or decrease over time, and

thus Y (t) is constant over time. The optimal consumption is a constant value at C(t). If

C(s) grows over time, ρ
∫∞
t e−ρ(s−t)C(s)ds > C(t) and therefore Y (t) > C(t), implying

I(t) > 0. For consumption to grow over time, Y (t) has to increase over time, and to achieve

the growth, I(t) has to be positive. Thus, the intuition is that, the NNP (C(t) + p(t)I(t))

measures the present value of welfare because the C(t) part measures the consumption level

and the p(t)I(t) part measures the future growth potential of consumption.
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