Weitzman (1976)

Toshihiko Mukoyama

November 2021

This note goes over Weitzman's (1976) basic result. Consider an economy with a consumption good and a capital good. Both goods are produced by capital. Consider the net national product (NNP) Y(t) be defined as:

$$Y(t) \equiv C(t) + p(t)I(t), \tag{1}$$

where Y(t) is output (NNP), C(t) is (aggregate) consumption, p(t) is the relative price of investment good, and I(t) is net investment. Let K(t) be the capital stock. Then

$$I(t) = \frac{dK(t)}{dt}.$$

Let the (representative) consumer maximize

$$\mathbf{U} \equiv \int_0^\infty e^{-\rho t} C(t) dt,$$

where $\rho > 0$ is the discount rate.

The result we will show is that, in the steady-state of the competitive equilibrium,

$$Y(t) = \rho \int_{t}^{\infty} e^{-\rho(s-t)} C(s) ds.$$

That is, the NNP represents the (average) present value if consumption. The consumer's budget constraint is

$$\dot{K}(t) = I(t)$$

and

$$Y(K(t)) = C(t) + p(t)I(t),$$
 (2)

where $\dot{K}(t)$ is a shorthand notation of dK(t)/dt and Y(K(t)) is the income (capital rental plus the firm ownership, adding up to the entire output). Note that the consumer is a price taker and when calculating how income changes with K(t), the consumer takes p(t) as given. That is,

$$Y'(K(t)) = \frac{dC(t)}{dK(t)} + p(t)\frac{dI(t)}{dK(t)}.$$
(3)

Setting up the Hamiltonian

$$H(t) \equiv e^{-\rho t} C(t) + \mu(t) I(t) + \lambda(t) (Y(K(t)) - C(t) - p(t)I(t)),$$

the first-order conditions are

$$e^{-\rho t} - \lambda(t) = 0,$$

$$\mu(t) - \lambda(t)p(t) = 0,$$

and

$$\lambda(t)Y'(K(t)) + \dot{\mu}(t) = 0.$$

Rearranging, we obtain

$$\dot{p}(t) = \rho p(t) - Y'(K(t)).$$
(4)

(This, of course, can also be interpreted as an asset arbitrage equation $\rho p(t) = Y'(K(t)) + \dot{p}(t)$.)

On the production side, suppose that the consumption good can be produced by technology

$$C(t) = F(K_C(t))$$

and the capital good can be produced by

$$I(t) = G(K_I(t)).$$

Here, $K_C(t)$ is the capital stock used for consumption good production and $K_I(t)$ is the capital stock used for capital good production. From the capital market clearing,

$$K_C(t) + K_I(t) = K(t) \tag{5}$$

holds. The consumption good producer maximizes

$$C(t) - r(t)K_C(t) = F(K_C(t)) - r(t)K_C(t),$$

where r(t) is the rental rate of capital. The capital good producer maximizes

$$p(t)I(t) - r(t)K_I(t) = p(t)G(K_I(t)) - r(t)K_I(t).$$

The FOCs for both problems imply

$$F'(K_C(t)) = p(t)G'(K_I(t)).$$
(6)

Now, differentiate (1) with respect to t:

$$\frac{dY(t)}{dt} = \frac{dC(t)}{dt} + p(t)\frac{dI(t)}{dt} + \frac{dp(t)}{dt}I(t).$$
(7)

Because

$$\frac{dC(t)}{dt} = F'(K_C(t))\frac{dK_C(t)}{dt},$$
$$p(t)\frac{dI(t)}{dt} = p(t)G'(K_I(t))\frac{dK_I(t)}{dt},$$

and (6), together with the fact that (5) implies

$$\frac{dK_C(t)}{dt} + \frac{dK_I(t)}{dt} = \frac{dK(t)}{dt},$$

we obtain

$$\frac{dC(t)}{dt} + p(t)\frac{dI(t)}{dt} = F'(K_C(t))\frac{dK(t)}{dt} = F'(K_C(t))I(t).$$
(8)

From (4),

$$\frac{dp(t)}{dt}I(t) = [\rho p(t) - Y'(K(t))]I(t).$$
(9)

Note that from (3),

$$Y'(K(t)) = \frac{dC(t)}{dK(t)} + p(t)\frac{dI(t)}{dK(t)} = F'(K_C(t))\frac{dK_C(t)}{dK(t)} + p(t)G'(K_I(t))\frac{dK_I(t)}{dK(t)}.$$

From (5),

$$\frac{dK_C(t)}{dK(t)} + \frac{dK_I(t)}{dK(t)} = 1,$$

and thus combining with (6) we obtain

$$Y'(K(t)) = F'(K_C(t)).$$

Using this relationship, (8), and (9), (7) can be rewritten as

$$\frac{dY(t)}{dt} = \rho p(t)I(t) = \rho(Y(t) - C(t))$$

Solving this differential equation, assuming $\lim_{s\to\infty} e^{-\rho s} Y(s) = 0$, we obtain

$$Y(t) = \rho \int_{t}^{\infty} e^{-\rho(s-t)} C(s) ds$$

as desired. The left-hand side (the current NNP) is equal to the (time-average of) the consumer's present value welfare.

To see some intuition, suppose that all future C(s) is constant at C(t). Then Y(t) = C(t), or I(t) = 0. When I(t) = 0, the capital stock does not increase or decrease over time, and thus Y(t) is constant over time. The optimal consumption is a constant value at C(t). If C(s) grows over time, $\rho \int_t^{\infty} e^{-\rho(s-t)}C(s)ds > C(t)$ and therefore Y(t) > C(t), implying I(t) > 0. For consumption to grow over time, Y(t) has to increase over time, and to achieve the growth, I(t) has to be positive. Thus, the intuition is that, the NNP (C(t) + p(t)I(t))measures the present value of welfare because the C(t) part measures the consumption level and the p(t)I(t) part measures the future growth potential of consumption.

References

Weitzman, M. L. (1976). On the Welfare Significance of National Product in a Dynamic Economy. Quarterly Journal of Economics 90, 156–162.