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Why Diamond-Mortensen-Pissarides (DMP) model?

I Explicit treatment of unemployment (want to work but can’t
find a job).

I Determination of flows rather than (/in addition to) stocks.

I Rich policy implications, in particular on the labor demand
side.

I Textbook: Pissarides (2000), but I will work with discrete
time.



The fundamental assumption: matching function

I The matching function:

The number of match (hire) at t + 1 = M(vt , ut).

The right-hand side is the matching function, whose inputs
are unemployment ut and vacancy vt .

I Note: In Gaĺı’s HB paper formulation, the left-hand side is the
number of match (hire) at t.

I The matching functions are usually assumed to be constant
returns to scale, and let the probability of a worker finding a
job be

M(vt , ut)

ut
= M

(
vt
ut
, 1

)
= M(θt , 1) = p(θt).

Let the probability of a vacancy finding a worker is

M(vt , ut)

vt
= M

(
1,

ut
vt

)
= M

(
1,

1

θt

)
= q(θt).



The fundamental assumption: matching function

I The unemployment dynamics, assuming that there are only
employment and unemployment (and total population 1)

ut+1 = (1 − p(θt))ut + σ(1 − ut),

where σ is the separation probability (exogenous: see
Mortensen-Pissarides 1994 for how to endogenize this).

I The steady-state unemployment:

u =
p(v/u)

σ + p(v/u)
.

Thus this approach embeds a negative relationship between v
and u (“Beveridge curve”), as long as σ doesn’t move around
much and M(·, ·) is stable.



Beveridge curves
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The basic DMP model (Pissarides 1985)

I Q: how is vt (or θt) determined in equilibrium? The firm’s
decision depends on

I Cost: cost of hiring a worker (similar to
investment/adjustment cost)

I Benefit: future profit from hiring a worker.

I We’ll clearly see this in the “optimal hiring” equation

κ = βq(θt)E [Jt+1]

where κ is the cost of posting one vacancy, β is discount
factor, and Jt+1 is the present value of hiring a worker.
This can be rewritten as

κ

q(θt)
= βE [Jt+1].

The RHS is the cost of hiring one worker, and the LHS is the
benefit.



The basic DMP model
I Jt satisfies

Jt = zt − wt + β(1 − σ)E [Jt+1],

where zt is the product per worker and wt is the real wage.
I Using this, the optimal hiring equation can be rewritten as

κ

q(θt)
= βE

[
zt+1 − wt+1 + (1 − σ)

κ

q(θt+1)

]
.

I Later we’ll detail (in Gaĺı’s paper) how the wages are
determined—but once it is done, this will look like

κ

q(θt)
= βE

[
(1 − γ)(zt+1 − b) + (1 − σ − γp(θt+1))

κ

q(θt+1)

]
,

where b is the worker’s value of not working and γ is a
parameter in Nash bargaining. This is one equation, one
unknown. After log-linearization, the solution will look like

θ̂t = Ωẑt ,

where Ω is a function of parameters. Done!



The basic DMP model

I This is really all—the rest of the model is basically used for
“properly” formulating the wage setting (Nash bargaining).

I I don’t really view it as very important (as long as it is
explicitly formulated) because the wage setting rule can be
anything.

I Please see the separate note for the complete formulation.



On business cycles (Shimer 2005, Gertler-Trigari 2009)
I Going back to optimal hiring equation

κ

q(θt)
= βE

[
zt+1 − wt+1 + (1 − σ)

κ

q(θt+1)

]
,

one can see how it generates business cycle fluctuations. The
easy special case is when σ = 1:

κ

q(vt/ut)
= βE [zt+1 − wt+1].

In booms, E [zt+1 − wt+1] goes up, so vt has to go up until
the LHS goes up sufficiently.

I “Shimer puzzle”: vt doesn’t move as much as in the data.
I The RHS solutions

I Make wt+1 more sticky. Then E [zt+1 − wt+1] will move more.
I Make β cyclical. (SDF for the firm, actually.)

I The LHS solutions
I Make the LHS less procyclical (note: κ/q(v/u) is procyclical

for a given v). E.g. “cost per hire” (Pissarides 2009)
I Make κ countercyclical. (Financial frictions etc.)



On inflation (Krause and Lubik 2007)

I In the competitive market (if the worker is hired one period
ahead),

E [zt+1] = E [wt+1].

In other words, MPL=MC.

I Here, the optimal hiring equation looks like

E [zt+1] = E [wt+1 + Jt − (1 − σ)Jt+1]

= E

[
wt+1 +

κ

βq(θt)
− (1 − σ)κ

βq(θt+1)

]
Here, the MC part is like “user cost of capital”—it includes
the “depreciation” (or “capital loss”) term. This extra part
can (potentially) play a role in the inflation dynamics once
this is embedded in a New Keynesian model.



One more note

I In the standard macro-labor literature, it is common to work
with θt = vt/ut . Gaĺı works with xt = ht+1/ut (in his timing
ht instead of ht+1 but anyway), where ht+1 = M(vt , ut) is the
total hire.

I Of course, there is one-to-one relationship between xt and θt .
In fact, xt = p(θt), so xt is an increasing function of θt .

I Then, the cost of hiring one worker κ/q(θt) is

κ

q(θt)
=

κ

q(p−1(xt))
= G (xt),

where G (·) is an increasing function. The optimal hiring
equation for a small firm can be rewritten as

G (xt) = βE [zt+1 − wt+1 + (1 − σ)G (xt+1)] .



In sum

I This formulation treats employment in a similar way as
investment. Another way of looking at the search-matching
friction (from the firm’s side) is that it is a linear adjustment
cost that varies endogenously. Yet another way of looking at
this is that having a worker is like having intangible capital.

I At the frontier, there are a lot of criticisms, alternative
formulations, and modifications being done, but at this point
the most natural approach to formulating unemployment
seems to be using this framework with some wage stickiness.

I As I demonstrated, this model ends up being “one equation,
one unknown.” We can use this as a “module” for a larger
model where unemployment is just a part of it. For example,
in Gaĺı’s paper we go over, there are concave utility, sticky
prices, sticky wages, monetary policy, and labor force
participation decisions. I will try to clarify where the
integration of this model interacts with the original part and
where it can be considered as a “separate part.”


