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The textbook project

� Based on a chapter of the Ph.D.-level textbook I am

team-writing with Marina Azzimonti, Per Krusell, Alisdair

McKay, and others.
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The plan

1. Introduction: why heterogeneity matters

2. Firm heterogeneity in the U.S. data

3. Reallocation and misallocation

4. Firm heterogeneity in general equilibrium

5. Alternative market arrangements

6. Business cycles and heterogeneous firms

7. Endogenous productivity
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Introduction

A simple model

� Production function for firm i:

yi = aiF (xi)
γ

The productivity ai can be heterogeneous.

F (·) is constant returns and γ ∈ (0, 1): decreasing returns to

scale. How does the ai heterogeneity matter in the aggregate?

� Optimization in two steps: first, cost minimization (common

for all firms)

min
x

px

subject to

F (x) = 1,

with solution x∗ and c = px∗.
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Introduction

� The second step: Let mi = F (x∗i ) be the choice of the firm

i’s “combined inputs.”

� The profit maximization problem:

max
mi

aim
γ
i − cmi.

From the first-order condition

aim
γ−1
i =

c

γ
,

yi = (c/γ)mi holds.

� The production function aggregates to:

Y = AF (X)γ ,

where

A ≡
(∫

a
1

1−γ
i di

)1−γ
.

Thus the distribution of ai influences A. 5



Introduction

� An example: ai follows a lognormal distribution

ln(ai) ∼ N(ν − σ2/2, σ2).

Then, the aggregate productivity A is

A = exp

(
ν +

γ

1− γ
1

2
σ2
)
.

The increase in σ does not influence the mean of ai in its

distribution, but increases A. The effect of σ is larger when γ

is closer to one, because highly productive firms can scale

larger.
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U.S. facts

Distribution: Firm size measured by employment
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U.S. facts

Fraction of people employed by each category
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U.S. facts

Establishment size measured by employment
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U.S. facts

Number of establishments at each firm
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U.S. facts

Reallocation: Job creation and job destruction rates

JCt ≡
∑

i:`it>`i,t−1
(`it − `i,t−1)
L̄t

,

JDt ≡
∑

i:`it<`i,t−1
(`i,t−1 − `it)
L̄t

.

These statistics measure the (gross) expansion and contraction of

establishments (or firms).
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U.S. facts

Job creation rate and job destruction rate (establishments)

1980 1985 1990 1995 2000 2005 2010 2015

year

10

12

14

16

18

20

22
jo

b
 c

re
a

ti
o

n
 r

a
te

 a
n

d
 j
o

b
 d

e
s
tr

u
c
ti
o

n
 r

a
te

 (
%

)

JC rate

JD rate

Source: BDS (U.S. Census Bureau) 12



U.S. facts

Entry rate and exit rate (establishments)
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U.S. facts

The fraction of employees working at the 10,000+ employee firms
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Reallocation and misallocation

� Foster, Haltiwanger, and Krizan (2001) decomposition:

Āt ≡ sitait,

where sit is the output share of establishment i.

∆Āt =
∑
i∈C

sit−1∆ait +
∑
i∈C

(ait−1 − Āt−1)∆sit +
∑
i∈C

∆ait∆sit

+
∑
i∈N

sit(ait − Āt−1)−
∑
i∈X

sit−1(ait−1 − Āt−1)

� All factors other than the first factor is due to reallocation.

� Using the U.S. Manufacturing data from 1977 to 1987,

Foster, Haltiwanger, Krizan (2001) estimate that the

aggregate change in multifactor productivity is 45%

accounted for by the first factor, and the rest of 55% is the

contribution of reallocation.
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Reallocation and misallocation

� “Misallocation” with idiosyncratic distortions

� Firm i is taxed at the idiosyncratic rate τi. The problem is

now

max
mi

(1− τi)aimγ
i − cmi.

The aggregate production function is still Y = AF (X)γ with

A =

∫
a

1
1−γ
i (1− τi)

γ
1−γ di(∫

a
1

1−γ
i (1− τi)

1
1−γ di

)γ .
When (ln(ai), ln(1− τi)) ∼ N(µ,Σ), where

µ = (νa − σ2a/2, ντ − σ2τ/2) and Σ =

[
σ2a ρσaστ

ρσaστ σ2τ

]

A = exp

(
νa +

γ

1− γ
1

2
(σ2a − σ2τ )

)
.
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Firm heterogeneity in general equilibrium

Hopenhayn and Rogerson (1993): dynamic + general equilibrium

� The firm’s flow profit (facing a firing tax τ)

π(`t−1, `t, at) = at`
γ
t − wt`t − cf − τ max(0, `t−1 − `t).

� The idiosyncratic productivity changes over time:

ln(at) = α+ ρ ln(at−1) + εt,

εt ∼ N(0, σ2).

� The firm’s optimization

W (a, `−1) = max
`
π(`−1, `, a) + βmax(E[W (a′, `)|a],−τ`),

� Free entry:

W e = ce,

where

W e =

∫
(W (a, 0) + cf )dν(a). 17



Firm heterogeneity in general equilibrium

� The representative consumer’s problem in the steady state

max
C,Ls

u(C)− χLs

subject to

C ≤ wLs + Π +R.

� The competitive equilibrium is “block recursive”:

� The wage w is determined by the firm’s optimization and

the free entry condition.
� For a given entry mass, the stationary distribution of

incumbents can be computed. The entry mass is
determined so that Ls = Ld.

� Employment outcome: it is not a priori clear whether L

increases with τ . (Firing ↓, but hiring also ↓ with

forward-looking firms)

� Misallocation: Y/L declines with τ . 18



Alternative market arrangement: monopolistic competition

� The final good is produced by (Dixit-Stiglitz, CES)

Y =

[∫
y
σ−1
σ

i di

] σ
σ−1

.

The cost minimization problem of a (competitive) final good

producer

min
{yi}

∫
piyidi

subject to the production function for a given Y .

pi = λy
− 1
σ

i Y
1
σ ,

λ is the Lagrange multiplier for the production constraint, and

it turns out it can be interpreted as the price of the final

good. Normalize it to one.
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Alternative market arrangement: monopolistic competition

� The intermediate-good producers are monopolists and solve

max
mi

(aim
γ
i )−

1
σ Y

1
σ aim

γ
i − cmi.

Each firm takes Y as given. In the Nash equilibrium among

the monopolists, the same aggregation as before

(Y = AF (X)γ) holds, where

A ≡

(∫
a

1
σ
σ−1−γ

i di

) σ
σ−1
−γ

.

Because σ/(σ − 1) > 1, γ does not have to be less than one.
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Alternative market arrangement: oligopoly and markups

� In the monopolistic competition case above, the markup turns

out to be constant:

pi =
σ

σ − 1
M,

where M≡ ∂(cmi)/∂yi.

� Thus this framework cannot be used for analyzing the change

in markups. There are many alternative formulations with

variable markups, but here I will introduce the Cournot

formulation based on Atkeson and Burstein (2008).

� Now there are two levels of nesting (“brands” within a

”sector”)

Y =

[∫
y
σ−1
σ

i di

] σ
σ−1

and yi =

 J∑
j=1

q
η−1
η

ij


η
η−1

,

where η > σ > 1 21



Alternative market arrangement: oligopoly and markups

� Within a sector, a firm is “large” in the sense it is aware that

qij can influence yi. The optimization problem is

max
qij ,mij

q
− 1
η

ij y
1
η

i y
− 1
σ

i Y
1
σ qij − cmij

where

yi =

 J∑
j=1

q
η−1
η

ij


η
η−1

.

The solution is

p̂ij =
ε(sij)

ε(sij)− 1
M

where

ε(sij) =

[
1

η
(1− sij) +

1

σ
sij

]−1
.

Thus the markup is increasing in sij ≡
p̂ijqij
piyi

=
p̂ijqij∑J
h=1 p̂ihqih

.
22



Business cycles and heterogeneous firms

� With many firms, idiosyncratic shocks cancel out with each

other (LLN).
yi,t+1 − yit

yit
= σεi,t+1,

Then

Yt+1 − Yt
Yt

=
1

Yt

N∑
i=1

∆yi,t+1 =

N∑
i=1

yit
Yt
σεi,t+1.

Thus the standard deviation of GDP growth rate is

σY = σ

√√√√ N∑
i=1

(
yit
Yt

)2

.

which is σ/
√
N if all firms are the same. With 1 million firms,

1/
√
N = 0.1%.

� One reaction: need an agg shock for business cycle analysis.

� Another reaction: maybe not all firms are the same.
23



Business cycles and heterogeneous firms

� Hulten’s Theorem:
dY

Y
=
∑
i

Di
dai
ai
,

where Di is the Domar weight (the numerator is sales):

Di =
piyi∑
i pici

.

� Gabaix (2011): when

Pr[yi > x] = χx−ζ

and ζ = 1, then

σY ∼
vζ

ln(N)
σ.

With 1 million firms, the coefficient is 7.2% instead of 0.1%.

(“Granular dynamics”)

� Production networks (sales >> value added)
24



Endogenous productivity

Klette and Kortum (2004)

� Endogenous productivity (quality ladders) with firm dynamics.

� Consumers:
∞∑
t=0

βt ln(Ct),

where

Ct = exp

∫ 1

0
ln

 Jt(j)∑
k=−1

qt(j, k)ct(j, k)

 dj

 .

� Intratemporal problem:

� Purchase only generation with lowest “quality-adjusted

price” pt(j, k)/qt(j, k).

� minimize expenditure →

ct(j, k) =
Et

pt(j, k)
. 25



Endogenous productivity

� Thus

Ct = Et exp

(∫ 1

0
[ln(qt(j, k))− ln(pt(j, k))]dj

)
.

This relationship can be rewritten as PtCt = Et, with the

price index

Pt ≡ exp

(∫ 1

0
[ln(pt(j, k))− ln(qt(j, k))]dj

)
.

Normalize Pt = 1.

� Intertemporal problem:

max
Ct

∞∑
t=0

βt ln(Ct)

subject to
∞∑
t=0

(
1

1 + r

)t
Ct ≤ A0,

26



Endogenous productivity

� Thus

Ct = Et exp

(∫ 1

0
[ln(qt(j, k))− ln(pt(j, k))]dj

)
.

This relationship can be rewritten as PtCt = Et, with the

price index

Pt ≡ exp

(∫ 1

0
[ln(pt(j, k))− ln(qt(j, k))]dj

)
.

Normalize Pt = 1.

� Intertemporal problem:

max
Ct

∞∑
t=0

βt ln(Ct)

subject to
∞∑
t=0

(
1

1 + r

)t
Ct ≤ A0,
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Endogenous productivity

� A firm produces and earns monopoly profit.

πt ≡ (pt(j, Jt(j))− wt)
Ct

pt(j, Jt(j))
=

(
1− 1

λ

)
Ct.

� It innovates with the cost wtR(η), where η is the innovation

intensity. It takes over another firm’s product line when

successfully innovates.

� Firm’s optimization

Vt = max
η

πt − wtc(η) +
1

1 + r
(1 + η − µ)Vt+1.

can be normalized to

v = max
η

(
1− 1

λ

)
C0 −R(η) + β(1 + η − µ)v,

Note the unknowns: C0, v, η, µ.
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Endogenous productivity

The general equilibrium of the model:

� Entry: free entry

v = ce.

� The total innovation is the sum of the incumbents’ innovation

and the entrants’ innovation

µ = η + ν.

� The labor market equilibrium condition:

C0

λ
+R(η) + ν = L.

� The aggregate growth rate is µ ln(λ).
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Endogenous productivity

Firm dynamics:

� The expected value of the growth rate of a firm is −ν.

(Grows at the rate η, contracts with the rate µ = η + ν.)

� The model cannot generate a Pareto tail.
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Endogenous productivity

An alternative setting that can generate a Pareto tail:

� A (large) firm has a positive constant growth rate g. All firms

receives a exit shock with the probability δ ∈ (0, 1).

� In the stationary distribution

(1 + g)h((1 + g)n)∆ = (1− δ)h(n)∆

has to hold.

� Guess that the distribution is Pareto: h(n) = Fn−(ζ+1). Then

(1 + g)F ((1 + g)n)−(ζ+1)∆ = (1− δ)Fn−(ζ+1)∆.

This equality holds for any n and ∆ when

ζ = − ln(1− δ)
ln(1 + g)

> 0.
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Endogenous productivity

How can we make the firm’s average growth rate to be positive?

� For example, suppose that the new product creation among

the total innovation is ξ (that is, among the total η + ν

innovations, ξ create new products, and µ = η + ν − ξ replace

existing products).

� Then, the average growth rate of a firm, which is still η − µ,

is now equal to ξ − ν (instead of just −ν). If ξ is sufficiently

large, ξ − ν can be positive.
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