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Abstract

This paper constructs a matching model with heterogeneous workers. A worker has
two-dimensional talent, and decides to specialize in one of two tasks taking his partner’s
talent into account. The patterns of specialization under matching friction are analyzed.
Due to matching friction, there may be mismatch of talents, and one may be forced to
specialize in a task in which he is not good at. In the example we present, the workers
are divided into groups. Some workers accept to match with any other workers, and some
workers only match with workers from outside their group. In equilibrium, low-skilled
workers tend to have a high unemployment rate. It is shown that the aggregate output
can increase by more generous unemployment insurance.
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1 Introduction

Economists have long been emphasizing the social benefit of having people specialize in what

they are good at. In Plato’s Republic, Socrates argues:

it occurred to me that, in the first place, no two of us are born exactly alike. We

have different natural aptitudes, which fit us for different jobs. ... Quantity and

quality are therefore more easily produced when a man specializes appropriately

on a single job for which he is naturally fitted, and neglect all others. (370, pp.

56–57)

In a modern society, a large part of production is conducted in teams. In team production,

specialization requires finding a good partner. When one specializes in one task, he has to

find someone else who specializes in the tasks that he left out. Very often, finding a good

partner who complements one’s ability is not easy. If one cannot find a good partner, he

might be forced to carry out a task that he is not good at. Through the channel of frictions

in searching for a partner, significant inefficiency may result.

This paper develops an equilibrium matching model to analyze this issue. Under matching

friction, how often do people specialize in the tasks they are not good at? How does the

matching friction affect the pattern of specialization in the entire economy? How is the

aggregate output of the economy affected by this channel? How do policies change the

patterns of specialization? What is the resulting income distribution? We analyze these

questions.1

This paper provides a natural framework to analyze “mismatch” of talents under het-

erogeneous agents and matching frictions. In our model, mismatch of talents can result in

an inefficient outcome through two mechanisms. First, mismatch leads to unemployment if

two workers decide not to form a match because their talents are not compatible with each
1There is a recent literature in search-theoretic models of money which investigates the issue of specializa-

tion. These papers consider search frictions in trading, rather than forming a long-run relationship as in the

current paper. See, for example, Kiyotaki and Wright (1993) and Camera, Reed, and Waller (2003).
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other. Second, mismatch leads to inefficient specialization if two workers decide to form a

match even though their talents are not compatible with each other. One striking policy

implication of our model is that the aggregate output can increase by more generous unem-

ployment insurance. More generous unemployment insurance makes workers more selective

and reduces the second inefficiency due to mismatch.

In labor economics, there is a long tradition of analyzing specialization patterns using

the Roy model (Roy [1951]).2 In this literature, it is commonly assumed that workers are

price-takers and choose their tasks (or sectors) based on their talent and the market wage.

Sattinger (2003) extends the standard single-agent search model and allows the workers to

choose which sector to search in prior to engaging in search. In our model, search activity is

entirely random, and the workers can decide whether to accept or reject the match depending

on the matched partner’s characteristics after the match is formed. Another important

difference of our work from Sattinger’s model is that our model is an equilibrium model, and

a worker’s decision influences the matching environment of the others.

There is a large literature of two-sided matching with heterogeneous agents.3 Most of the

literature, however, concerns one-dimensional heterogeneity across agents. In those models,

agents can be ranked from skilled to unskilled (or attractive to unattractive), and the resulting

matching patterns are analyzed in various environments. One-dimensional models, however,

are not able to analyze the issue of specialization. If one is equally good at carrying out all

tasks and another is equally bad at all tasks, the efficiency of the economy is hardly affected

by the arrangement of who is assigned to which task. This paper extends the model to the

case where the agents have two-dimensional talents. Matching friction induces some agents

to specialize in the tasks that they are not good at.

Sundaram (2003) extends Burdett and Coles (1997) model to allow for two-dimensional

characteristics (“charm” and “taste”) on one side of the match. Her main concern is how in-
2See, for example, the survey by Sattinger (1993).
3See, for example, McNamara and Collins (1990), Lu and McAfee (1996), Burdett and Coles (1997),

Eeckhout (1999), Bloch and Ryder (2000), Shimer and Smith (2000), Shi (2001), Smith (2002), Delacroix

(2003), Danthine (2004), Shimer (2004).
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dividual frequency of match is related to search friction. Our model permits two-dimensional

characteristics on both sides. We analyze the aggregate consequences, as well as the individ-

ual behavior.

This paper is organized as follows. The next section describes the model. In Section 3,

we characterize an example with a specific distribution. Section 4 discusses certain aspects

of the results in Section 3. Section 5 concludes.

2 Model

There are continuum of workers with measure 1. A worker can produce when matched with

another worker.4 Here, “matching” describes a situation where they meet and both accept

each other as a production partner. For production, there are two tasks to perform: X and

Y . One worker specializes in task X, and the other specializes in task Y . Workers differ in

their talents to perform each task. Specifically, let the vector (xi, yi) ∈ [0, 1]× [0, 1] represent

worker i’s talent to perform task (X,Y ). Assume that the production function is linear:

Π(i, j) = 2(xi + yj)

when worker i specializes in task X and worker j specializes in task Y . Assume that workers

divide the output in half,5 therefore one worker receives w(i, j) ≡ xi + yj . Clearly both

workers agree upon the efficient pattern of specialization within the match, and i specializes

in X if

xi + yj ≥ xj + yi.

Figure 1 is drawn from the viewpoint of worker i. If he matches with a worker whose char-

acteristics fall on region A, worker i will specialize in task X. If his partner’s characteristics

fall on region B, worker i will specialize in task Y . Since his xi is low, it can easily be guessed
4As in the standard “partnership” models, we can interpret this matching process in two ways. Here we

interpret that two workers are drawn from the same pool of workers. Instead, it is possible to interpret (as

in the literature cited in footnote 3) that there are two symmetric groups of workers, and one is drawn from

each group.
5An alternative assumption would be to share the total surplus by, for example, Nash bargaining.
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Figure 1: Efficient pattern of specialization within match

that it is not good for economy-wide efficiency to make him match with a region A worker.

The following proposition confirms this intuition.

The following characterizes an economy-wide efficient (maximizing total output) pattern

of match.

Proposition 1 When the match distribution is symmetric with respect to y = x, it is neces-

sary for efficiency that (except for measure zero matches) a worker i with xi > yi is matched

with a worker j with xj < yj and vice versa.

Proof: See Appendix. 2

An immediate corollary is that for efficiency, a worker i with xi > yi always specializes

in task X and a worker j with yj > xj always specializes in task Y (See Figure 2). In fact,

this will be the pattern which will realize in the frictionless Roy model. Is this pattern of

specialization realized when there are matching frictions? The answer is no—under matching

frictions, there are workers who specialize in tasks that they are not good at. To proceed

with the analysis, we formally specify the environment below.
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Figure 2: Economy-wide efficient pattern of specialization

Suppose that an unmatched worker receives hdt amount of utility during the time period

of dt. The value of h can be interpreted as the level of unemployment insurance. Here, we

do not explicitly consider how h is financed. Appendix A shows that when h is financed

by a lump-sum tax, the model with tax is equivalent to the current model. Assume that

an unmatched worker randomly meets with another unmatched worker with the probability

αdt during the time period of dt.6 Let Fi be the feasible set for i: the set of workers who

accepts i if they meet. Let Fc
i be the complementary set of Fi. The Bellman equation for

an unmatched worker i is:

Ui = hdt+
1

1 + rdt

[
αdt

(∫

Fi

max〈Vi(xj , yj), Ui〉dF (xj , yj) +
∫

Fc
i

UidF (xj , yj)

)
+ (1− αdt)Ui

]
,

where r is the discount rate, F (xj , yj) is the distribution function of (xj , yj) among the

unemployed workers, Ui is the value of i being unemployed, and Vi(xj , yj) is the value of i

being matched with worker j.

Assume that a match is subject to exogenous separation with probability δdt during the

time period dt. The Bellman equation for a worker i matched with worker j is:

Vi(xj , yj) = max〈xi + yj , xj + yi〉dt +
1

1 + rdt
[(1− δdt)Vi(xj , yj) + δdtUi] .

6This can be thought as a constant-returns-to-scale matching technology.
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Figure 3: Decision rule

Note that from the Contraction Mapping Theorem (Stokey and Lucas with Prescott [1989]

Theorem 3.2 and Corollary 1), Ui is nondecreasing in xi and yi, and Vi(xj , yj) is nondecreasing

in xi, yi, xj , and yj when Fi is monotonic (Fi ⊇ Fi′ when xi ≥ xi′ with yi = yi′ or yi ≥ yi′

with xi = xi′). Taking dt → 0,

rUi = h + α

∫

Fi

max〈Vi(xj , yj)− Ui, 0〉dF (xj , yj) (1)

and

rVi(xj , yj) = max〈xi + yj , xj + yi〉 − δ[Vi(xj , yj)− Ui] (2)

hold.

As in the standard models of search and matching, the decision of accepting a match or

not exhibits a “reservation value” property. What is new here is that the reservation value

is not one-dimensional. In particular, the reservation value depends on the specialization

pattern. When worker i meets a worker j in region A of Figure 1, for i the value of xj is

not relevant since j will always specialize in task Y in this match. Therefore, i will set only

set the reservation value on yj (call this yR
i ) and accept the match if and only if yj ≥ yR

i .

Similarly, when i meets a worker j in region B, he sets a reservation value on xj and accepts
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Figure 4: X-type and Y -type

a match if and only if xj ≥ xR
i . The decision rule is depicted in Figure 3. Note that (xR

i , yR
i )

lies on the 45-degree line that goes through (xi, yi), but it can be larger or smaller than

(xi, yi).

3 Example: “Flipped-L” Distribution Case

It is difficult to make much progress without imposing some restrictions on the distribution

of talent. In this section, we assume a specific distribution of talent, and characterize the

equilibrium.

3.1 Talent Distribution

Here we consider a “flipped-L” shape distribution of talent (xi, yi). (See Figure 4.) There

are two types of agents. The first type, called X-type, has a skill level xi = 1 in task X and a

skill level yi ∈ [0, 1] in task Y . The second type, called Y -type, has a skill level yi = 1 in task

Y and a skill level xi ∈ [0, 1] in task X. We assume that the distribution of yi across X-type

agents and the distribution of xi across Y -type agents are symmetric and follow a continuous

distribution. Note that from Proposition 1, the efficient matching pattern is realized if each
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X-type worker matches with a Y -type worker. The meeting of the same type workers (X-

type with X-type and Y -type with Y -type) can be considered as “mismatch”: if they don’t

form a match, it results in unemployment due to mismatch. If they form a match, one of

the workers has to specialize in a task that he is not good at. In both cases, the mismatch

creates inefficiency.

3.2 Nash Equilibrium

First, we construct an equilibrium given the talent distribution of the unemployed: F (x, y).

This is the “Nash equilibrium” problem in Burdett and Coles (1999) terminology. Clearly,

F (x, y) is endogenous and determined by the behavior of the workers. We will endogenize

F (x, y) in the following section.

We impose some restrictions on the parameters.

Assumption 1 Assume that 2 > h > h, where h ≡ 1− α/2(r + δ).

Clearly, when h is too high, no one want to accept the match. When h is too low, everyone

will accept any match. We exclude these equilibria by this assumption.

In this paper, we focus on a stationary equilibrium that is symmetric across type X and

type Y . We assume that F (x, y) is symmetric with respect to the x = y line and strictly

positive everywhere along the “flipped-L” edge. Without loss of generality, we will focus on

a Y -type worker. For the sake of brevity, we index the workers by the value of x hereafter.

With a slight abuse of notation, we let F(xi) ⊆ [0, 1] represent the values of x of the workers

who would accept the worker i. Since h < 2, all the Y -type workers accept to match with

any of the X-type workers, that is, 1 ∈ F(xi) for any xi < 1. When a Y -type worker i and

an X-type worker j match, j (whose x = 1) always specialize in X and value of yj does not

matter for production. When a Y -type worker i and another Y -type worker j match, both

have y = 1. Therefore, when we consider the matching decision of Y -type workers, we do

not need to keep track of the partner’s value of y. Therefore, for the sake of brevity, we will

write Vi(xj , yj) as Vi(xj) and F (xj , yj) as F (xj) hereafter. We consider the case where F (xj)
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is continuous for xj ∈ [0, 1).7 (Clearly, it is not continuous at xj = 1, where all the X-type

workers are.) The following lemma is straightforward from the fact that everyone prefers to

match with a person with higher x.

Lemma 1 When x′ ≥ x, F(x′) ⊇ F(x).

Proof: Suppose that xi ∈ F(x), that is, i accepts to produce with a worker with X-skill

x. In other words, Vi(x) ≥ Ui. It suffices to show that i ∈ F(x′) for any x′ ≥ x. From (2),

Vi(x′) ≥ Vi(x). Therefore, when Vi(x) ≥ Ui, Vi(x′) ≥ Ui also holds. 2

This Lemma ensures that Vi(x) and Ui are monotonically increasing in xi. Define an accep-

tance set A(xi) ⊆ [0, 1] as the set of the x-values of workers whom i is willing to accept.

With a similar argument as Lemma 1, we can establish the following.

Lemma 2 A(x) is either empty or an interval containing 1.

Proof: Suppose that x ∈ A(xi). That is, Vi(x) ≥ Ui. Then, from the previous argument,

Vi(x′) ≥ Ui also holds for any x′ ≥ x. 2

In fact, Lemma 2 is a direct consequence of Lemma 1, considering the fact that A(x) is the

inverse correspondence of F(x). Define the matching set M(xi) ≡ F(xi)∩A(xi). This is the

set of x-values of workers that i actually matches with once he meets. Utilizing this notation,

(1) can be rewritten as:

rUi = h + α

∫

M(xi)
[Vi(xj)− Ui]dF (xj). (3)

To characterize the acceptance set, first note that given Ui, Vi(x) is continuous and

increasing in x. In particular, from (2),

Vi(x) =

{
(x + 1 + δUi)/(r + δ) if x ≥ xi,

(xi + 1 + δUi)/(r + δ) if x < xi.

7This will be verified later when we analyze endogenous F (xj).
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See Figure 5. Note that Vi(x) is (weakly) increasing in xi, given Ui. The decision rule for

accepting or not depends on whether Vi(x) ≥ Ui. Vi(x)− Ui can be expressed as:

Vi(x)− Ui =

{
(x + 1− rUi)/(r + δ) if x ≥ xi,

(xi + 1− rUi)/(r + δ) if x < xi.
(4)

From Lemma 2, the acceptance set A(xi) can be characterized by its lower bound. Denote

it by xi. From (4),

xi =

{
0 if xi + 1− rUi ≥ 0,

rUi − 1 otherwise.
(5)

See Figure 6.

Now we will prove the existence of the equilibrium that exhibits a “group” structure.

Theorem 1 (Existence and Uniqueness of the Nash Equilibrium)

There exists a unique Nash equilibrium of this economy and has the following property.

The agents are divided into two groups within each types. Y -type can be divided into Group

Y 1 and Group Y 2.

• Y 1: xi ∈ [x̂, 1]. Mi(= Fi = Ai) is the entire population.

11



0
1 x

xi

Vi(x)-Ui

xi

r

rUx
ii

1

0
1 xxi

Vi(x)-Ui

xi=0

r

rUx
ii

1

Figure 6: Determination of xi

• Y 2: xi ∈ [0, x̂). Mi(= Fi = Ai) is the entire population except for the workers in

Group Y 2.

X-type can be divided into Group X1 and Group X2.

• X1: yi ∈ [ŷ, 1]. Mi(= Fi = Ai) is the entire population.

• X2: yi ∈ [0, ŷ). Mi(= Fi = Ai) is the entire population except for the workers in

Group X2.

ŷ = x̂ from symmetry.

Proof: See Appendix. 2

The structure of this equilibrium is depicted in Figure 7. X1 and Y 1 workers can match

with anyone they meet. X2 and Y 2 workers match with anyone except the people from their

own group. One immediate corollary is that X2 and Y 2 workers always specialize in the

tasks that they are good at (as is prescribed in the efficient allocation of Proposition 1). X1
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Figure 7: Equilibrium “group” structure

and Y 1 workers may specialize adversely. The inefficiency due to mismatch takes two forms

here. Meeting with the same type (X-type with X-type and Y -type with Y -type) results

in unemployment for X2 and Y 2 workers. For X1 and Y 1 workers, mismatch results in an

inefficient specialization.

In the context of the general decision rule in Figure 3, Y 1 workers’ decision rule can be

depicted as Figure 8 (the entire “flipped-L” is above the reservation value) and Y 2 workers’

decision rule can be depicted as Figure 9. For a Y 2 worker, the reservation value of x, xR
i ,

coincides with x̂.

Burdett and Coles (1997), assuming that a person’s talent (“pizazz” in their terminology)

is one-dimensional, obtained a “class” structure Nash equilibrium.8 The properties of the

equilibrium in our model are strikingly different from the ones of Burdett and Coles’ model.

First, in our model, a “better” worker is less selective: a Group X1 (or Y 1) worker accepts

a match with anyone. In Burdett and Coles (1997), the reservation value for acceptance

is an increasing function of a person’s talent: therefore, a better worker is more selective.
8McNamara and Collins (1990), Eeckhaut (1999), Bloch and Ryder (2000), and Smith (2002) also found

the same property.
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Figure 9: Decision rule of a Y 2 worker i
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This property is discussed more in detail in the next section. Second, there is no one-sided

rejection in our model. In Burdett and Coles’ model, when a very high-talent person meets a

low-talent person, the high-talent person rejects the match while the low-talent person wants

to match. This does not occur in our model—when two workers meet, either they both agree

to match or both agree not to match.

3.3 Endogenous Talent Distribution of the Unemployed

Now we analyze the stationary equilibrium with endogenous F (x, y). (This is the “market

equilibrium” problem in Burdett and Coles [1999] terminology.) Here we assume that the

underlying distribution of talent is of “flipped-L” form and uniform. The density at each

point is 1/2. The population of Group Y 1 is (1 − x̂)/2, and the population of Group Y 2 is

x̂/2. Similarly, the population of Group X1 is (1− x̂)/2, and the population of Group X2 is

x̂/2.

3.3.1 Stationary Distribution of Employment Status

Given x̂, we can calculate the stationary distribution of employment status. Clearly, all the

agents in Group 1 (X1 and Y 1) share the same unemployment rate. All the agents in Group

2 (X2 and Y 2) share the same unemployment rate. Denote the employment rate of Group

i as mi and the unemployment rate of Group i as ui = 1 −mi. The stationarity condition

for Group 1 equates the inflow and the outflow of employment. Since a Group 1 worker will

match with anyone, the probability of matching is α. The probability of separation is δ by

assumption.

α(1−m1) = δm1.

Therefore, m1 = α/(α + δ) and u1 = δ/(α + δ).

For Group 2, the probability of matching is lower than α. The total unemployment

population is the sum of the Group-1 unemployed and Group-2 unemployed: u1(1− x̂)/2 +

u2x̂/2. Among them, they only match with u1(1− x̂)/2+u2x̂/4 amount of people. Therefore,

the probability of moving from unemployment to employment for Group-2 workers is α[u1(1−
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x̂) + u2x̂/2]/[u1(1− x̂) + u2x̂]. The stationarity condition is

α
(1−m1)(1− x̂) + (1−m2)x̂/2
(1−m1)(1− x̂) + (1−m2)x̂

(1−m2) = δm2. (6)

It turns out that there is only one m2 ∈ [0, 1] that solves (6).

Proposition 2 There exists a unique m2 ∈ [0, 1] that satisfies (6).

Proof: See Appendix. 2

It can also be seen that unskilled workers (Group 2 workers) have a higher unemployment

rate than skilled workers (Group 1 workers).9 This is consistent with the data. (See Mincer

[1991].)

Proposition 3 Group 2 workers have a higher unemployment rate than Group 1 workers,

that is, u2 > u1.

Proof: See Appendix. 2

The solution for m2 can be expressed as a function of x̂. Let us express this dependence by

m2 = M2(x̂). The following holds.

Proposition 4 m2 is decreasing in x̂, that is, M ′
2(x̂) < 0.

Proof: See Appendix. 2

3.3.2 Determination of Threshold

Here, we solve for the equilibrium value of x̂. From Vi(x̂)− Ui = 0,

x̂ + 1 = rUi (7)
9Calling Group 1 workers “skilled” and Group 2 workers “unskilled” under the flipped-L distribution

accords with the view that skilled workers are more flexible in performing various tasks. In his classic paper,

Schultz (1975) emphasized the importance of people’s ability to reallocate their resource in response to changes

in economic conditions. In a recent paper, Möbius (2000) built a model where “skill” is defined as the ability

to perform wider variety of tasks.
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has to be satisfied. From the previous result, we can determine the distribution function

F (x). It turns out that for the Y -type,

F (x) =

{
s1x if x ∈ [0, x̂)
s2x + s1x̂ if x ∈ [x̂, 1),

where

s1 =
1
2

u2

u1(1− x̂) + u2x̂

and

s2 =
1
2

u1

u1(1− x̂) + u2x̂
. (8)

Note that u1 = δ/(α + δ) and u2 = 1 − m2 can be derived from (6), where m1 = 1 − u1.

Therefore, s1 and s2 are functions of x̂ and parameters.

From (3), for xi = x̂,

rUi = h + α

(∫ 1

x̂

1
r + δ

[x + 1− (x̂ + 1)]s2dx +
∫ 1

0

1
r + δ

[2− (x̂ + 1)]
1
2
dx

)

holds. Calculating this using (7),

x̂ + 1 = h +
α

r + δ

[
s2

2
(1− x̂)2 +

1
2
(1− x̂)

]
. (9)

This defines x̂. The following holds.

Proposition 5 Under Assumption 1, there exists a unique x̂ ∈ (0, 1) that satisfy (9).

Proof: See Appendix. 2

Now, the existence and uniqueness of the market equilibrium are formally shown.

Theorem 2 The market equilibrium exists, and it is unique.

Proof: See Appendix. 2
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3.3.3 Comparative Statics

Here, we conduct comparative statics. First, we show the effect of a change in h (which can

be interpreted as the level of unemployment insurance). Second, we construct a numerical

example and show the effect of the change in h.

Proposition 6 x̂ is increasing in h.

Proof: See Appendix. 2

From this and Proposition 4, it follows that m2 is decreasing in h. Total unemployment

in the steady-state, u1(1− x̂) + u2x̂, is increasing in h.

3.3.4 Numerical Example

One period corresponds to one month in our model. α is set to 0.33 to match the duration

of unemployment of 12 weeks. We set δ to 0.014 to match the employment rate of Group 1

agents to about 4%. We use r = 0.005 and h = 1. If we solve for (13) and (9) jointly then

x̂ = 0.8993. The employment rate of Group 1 agents (m1) is 0.959 and the employment rate

of Group 2 workers (m2) is 0.926.

Let h ∈ [0.5, 2] and compute m1, m2, and x̂ for different values of h with the baseline

parameters. As Figure (10) shows x̂ increases as we increase h. Accordingly m2 decreases.

A higher h makes workers more selective in match. Later we will discuss this experiment

further in detail.

3.3.5 Income Distribution in the Stationary Equilibrium

Now we look at the distribution of income across workers in the stationary equilibrium

discussed above. Since we are focusing on a symmetric equilibrium, we only look at Y -type

workers. Clearly, an unemployed (unmatched) worker receives h. In the following, we will

discuss the income of employed workers, w(i, j).10

10Note that there is a variation in income across the workers with the same xi. This reflects the “luck”

factor—some people are luckier than others in finding a good working partner. This variation would appear

as “within-group inequality” in the data.
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Figure 10: m1, m2, and x̂ as a function of h.

Fix xi of the worker i. First we consider the Group-Y 2 workers, that is, the case of

xi ∈ [0, x̂). Since we are focusing on the stationary equilibrium and the separation rate is

constant across the match, the distribution at the new match and the distribution across the

population are identical. The distribution at the new match is determined by the relative

population of unemployed workers. To construct the distribution function, normalize the

total measure of unemployed workers to 1. There are three types of different workers to

(potentially) match with from the viewpoint of a Y -type unemployed worker.

1. X-type workers: measure 1/2

2. Y -type workers with xj ∈ [x̂, 1): measure u1(1− x̂)/2(u1(1− x̂) + u2x̂)

3. Y -type workers with xj ∈ [0, x̂): measure u2x̂/2(u1(1− x̂) + u2x̂)

With the third group, a match is never formed. Therefore, conditional on the match, the

probability of matching with the first group of people is Φ2 = 1/s̄ where s̄ ≡ 1 + u1(1 −
x̂)/(u1(1− x̂)+u2x̂). The conditional distribution of matching with the second group worker
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with xj = x is uniform with density φ2
1 = u1/s̄(u1(1− x̂) + u2x̂). Therefore, for the workers

with xi ∈ [0, x̂), the income distribution (conditional on employment) follows

1. Density φ2
1 with w(i, j) = 1 + xj for xj ∈ [x̂, 1),

2. A mass of Φ2 with w(i, j) = 2.

Second, we consider Group-Y 1 workers. They face the same three types of potential

partners as before. One difference from above is that they will form a match with anyone.

Another difference is that when matched with a partner j in the second group above, i may

specialize in task X or task Y depending on whether xi ≥ xj .

The conditional probability of matching with the first group of people is Φ1 = 1/2. The

conditional density of matching with the second group worker is φ1
1 = u1/2(u1(1− x̂) + u2x̂)

and the conditional density of matching with the third group worker is φ1
2 = u2/2(u1(1 −

x̂) + u2x̂). Therefore, for workers with xi ∈ [x̂, 1), the income distribution (conditional on

employment) follows:

1. A mass of φ1
2x̂ + φ1

1(xi − x̂) with w(i, j) = 1 + xi,

2. Density φ1
1 with 1 + xj with w(i, j) = 1 + xj for xj ∈ (xi, 1),

3. A mass of Φ1 with w(i, j) = 2.

Figure 11 depicts the cumulative income distributions of the workers (including the un-

employed workers, who receive h) given xi, in the benchmark case. This is the distribution by

the pure “luck” factor. The dashed line is for xi = 0.95, who are the Group-1 workers. The

solid line is for xi = 0.7, who are the Group-2 workers. (In fact, all the Group-2 workers have

the identical distribution functions.) We can see that there are more workers with w(i, j) = 1

for xi = 0.7, since they are more selective. There are more “medium-range” income earners

for xi = 0.95.

Figure 12 draws the cumulative income distribution for xi = 0.7 (Group 2) when h

changes.11 There are two differences: There are more unemployment with h = 1.4, since
11Note that here we are ignoring how h is financed, to make the comparison clear.
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Figure 11: Cumulative distribution functions of income when h = 1.0
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Figure 12: Cumulative distribution functions of income with xi = 0.7
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Figure 13: Cumulative distribution functions of income with xi = 0.95

people are more selective. By the same effect, employed workers earn more with h = 1.4. In

particular, we can show that from (6), Φ1 = αu2/[2δ(1− u2)] and therefore increasing in u2

(thus increasing in h). As h increases, there are more Group-2 workers earning the income 2.

On average, these two effects provide a mixed effect on the income of the Group-2 workers.

Figure 13 draws the same graphs as Figure 12 for xi = 0.95. The two distributions are

very similar. The graph of h = 1.4 lies above for the income level between 1+xi and 2. (That

is, the distribution for h = 1.4 is dominated in this region.) This follows since φ1
1 is decreasing

in h (u1 is constant and u1(1 − x̂) + u2x̂ is increasing in h). Intuitively, when h increases,

both u2 and x̂ increases. Thus there are more Group-2 workers in the unemployment pool.

This worsens the matching perspective of a Group-1 worker. In sum, high h tends to lower

the income for Group-1 workers.

Next, we turn to the difference of income across different xi. Figure 14 depicts the

average income across different xi in the benchmark case. The average income is calculated
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Figure 14: Average income across different xi

as [
∫ 1
x̂ (1 + x′)φ2

1dx′ + 2Φ2]m2 + hu2 for xi < x̂ and [(1 + xi)[φ1
2x̂ + φ1

1(xi − x̂)] +
∫ 1
xi

(1 +

x′)φ1
1dx′ + 2Φ1]m1 + hu1 for xi ≥ x̂.

Note that there is a “drop” in the average income at xi = x̂. This is due to the fact

that we are comparing the steady-state. At xi = x̂, the workers are indifferent between

being selective or not. If all the non-selective workers decide to be selective, many of them

(workers who are matched with xj < x̂) have to suffer from unemployment initially. They

earn a higher average income in the long run, and this makes them indifferent. A worker

with xi = x̂− ε earns higher average income in the long run than a worker with xi = x̂ + ε,

simply because he is more selective.

Figure 15 draws the same relationship for different h. Clearly, higher h means that average

income is higher overall, since the income during unemployment is higher and people are more

selective. However, again, this figure ignores that it is costly to finance h. Figure 16 makes an

adjustment to make the comparison “fair”—there, h(u1(1− x̂)+u2x̂) is subtracted from each
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Figure 15: Average income across different xi
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Figure 16: Average income across different xi, tax adjusted
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Figure 17: Average production across different xi, tax adjusted

worker’s income so that h is financed by a balanced budget. Interestingly, changing h has

a non-monotonic effect on the average income, even after adjusting for the tax. This is due

to the fact that higher h makes people more selective, which raises the average productivity

of Group-2 employed workers. In sum, a worker with high xi is always against the high h.

However, a worker with low xi may prefer to have high h.

To see this point more clearly, Figure 17 draws a similar diagram for the average produc-

tion, that is, the average income given that one is employed. At the right tail, the average

production is slightly decreasing in h, but in other parts they are significantly increasing in

h.
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3.3.6 Aggregate Output

The aggregate output can be calculated by summing up all the production by the individuals.

In particular, the aggregate output QA is:

QA = 2× (QY 1 + QY 2),

where QY 1 is the aggregate income of Group Y 1 and QY 2 is the aggregate income of Group

Y 2.

QY 2 can be calculated as:

QY 2 =
∫ x̂

0

(∫ 1

x̂
(1 + x′)φ2

1dx′ + 2Φ2

)
m2

2
dx

=
m2x̂

2

(
φ2

1

[
3
2
− x̂− x̂2

2

]
+

2
s̄

)
.

QY 1 can be calculated as:

QY 1 =
∫ 1

x̂

(
(1 + x)[φ1

2x̂ + φ1
1(x− x̂)] +

∫ 1

x
(1 + x′)φ1

1dx′ + 2Φ1

)
m1

2
dx

=
m1

2

(
φ1

2

[
3
2
x̂− x̂2 − x̂3

2

]
+ φ1

1

[
10
6
− 3x̂ + x̂2 +

x̂3

3

]
+ 1− x̂

)
.

Figure 18 calculates QA in the above numerical experiment. It can be seen that when the

level of h is low, an increase in h (which can be viewed as a more generous unemployment

insurance policy) can increase the total output, despite the fact that the unemployment

rate always increases with h. QA may increase since when h increases, x̂ increases, and a

more efficient pattern of specialization realizes. In fact, the average productivity of workers

Z ≡ QA/(m1[1− x̂] + m2x̂) increases as h increases. See Figure 19. As h approaches to 2, Z

also approaches to 2. When h is (very close to) 2, x̂ becomes 1 (see Figure 10) and everyone

becomes a Group-1 worker. Workers match only with the opposite-type workers. When h

exceeds 2, no one want to match and the aggregate output collapses to zero.

Z is monotonically increasing in h, but when h is too high, this productivity gain is

overwhelmed by the increase in unemployment, and QA starts to fall after some value of

h. This example shows that through the channel of specialization, the unemployment in-

26



0.5 1 1.5 2
1.42

1.44

1.46

1.48

1.5

1.52

1.54

1.56

1.58

Q
A
 

h 

Figure 18: QA as a function of h.
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Figure 19: Z as a function of h.
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surance policy can affect the aggregate productivity and output. Several papers12 have also

found that the average productivity of workers may increase by more generous unemployment

insurance. However, we are aware of only one other paper (Acemoglu and Shimer [1999])

that constructed a model where aggregate output increases by more generous unemployment

insurance. Aggregate output is the product of the average productivity and the number

of workers, and in most of the models the increase of the average productivity is not large

enough to compensate the decrease of the number of the workers. Acemoglu and Shimer’s

(1999) mechanism is based on the risk aversion of the workers, and very different from ours.

In our model, the productivity gain comes from a better allocation of talent.

4 Discussion: Are Better Workers Always Less Selective?

The example above has a virtue of the simplicity of the solution. However, the distribution

is special and certain results can be seen as extreme. In this section, we will discuss one such

a result in detail.

In the previous section, it was shown that a better worker is less selective in matching.

This result does not always hold for other distributions of talents. Consider the following

two-types example. Assume that in the economy, there are two types, G and B. G-type’s

talent vector is (1, 1) and B-type’s talent vector is (k, k), where k ∈ (0, 1). Note that in this

framework, specialization is not important, since both workers have the same skill between

two tasks.

Let πG be the fraction of G-type workers in the unemployment pool. (1 − πG) is the
12Diamond (1981) suggests a mechanism related to ours through various setup costs for production. As the

unemployment insurance becomes more generous, workers become more selective and choose matches with

lower setup costs. His model has ex-ante homogeneous workers. Marimon and Zilibotti (1999) proposes a

similar mechanism: workers become more selective when the unemployment insurance is more generous. They

consider a model with symmetric workers (with their characteristics lying on a circle), and in the equilibrium

they consider, the unemployment rate is uniform across types. Acemoglu (2001) focuses on the “hold-up”

problem in search equilibrium and argues that unemployment insurance may increase the fraction of high-

paying jobs with large sunk costs. Lagos (2004) constructs a model where policies can affect the productivity

through search frictions. In his paper, it is also the case that a more generous unemployment insurance in-

creases average productivity. The mechanism in his paper is that when the unemployment insurance increases,

an inefficient match becomes unlikely to survive.
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fraction of B-type workers in the unemployment pool. Since we are only interested in the

matching decisions here, let us assume that πG is given exogenously.13

Type G will select from two possible decisions:

A Accept all,

B Accept only G.

The Bellman equations for a G-type worker is:

rV G
G = 2− δ(V G

G − UG),

rV B
G = 1 + k − δ(V B

G − UG),

rUG = h + α[πG(V G
G − UG) + (1− πG)(V B

G − UG)],

where V j
i is the value of a i-type worker matched with a j-type worker and Ui is the value

of an unemployed Type i worker.

G-type will choose A if and only if V B
G −UG ≥ 0. From the Bellman equations, it can be

calculated that V B
G − UG ≥ 0 holds if and only if h ≤ RG, where

RG = 1 + k − α

r + δ
(1− k)πG.

Similarly, B-type has two possible decisions:

a Accept all,

b Accept only G.

Type B may or may not be accepted by G. Therefore, this type’s decision-making process

will have to be conditional on the behavior of G.

When G-type chooses A, B-type chooses a if and only if h ≤ RB, where

RB = 2k − α

r + δ
(1− k)πG.

13This can be achieved by replacing the matched pair by their (unmatched) “clones” every time a match is

formed.
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Note that RG > RB. When G-type chooses B, B-type has no choice other than a (as long

as 2k > h).

Thus, there are three types of equilibrium, depending on the value of h. When h is lower

than RB, the equilibrium set of choices is (A,a). Both are not selective. When RB < h < RG,

the equilibrium set of choices is (A,b). This situation is similar to the example in the previous

section—better workers are less selective. When h > RG, the equilibrium set of choices is

(B,a). In this case, better workers are more selective—similar to the result of Burdett and

Coles (1997).

As can be seen from this example, in general a better worker can be more selective or

less selective in our framework. (Note that in Burdett and Coles (1997), a better worker is

always more selective.) The example in the previous section can be viewed as the opposite

extreme of Burdett and Coles (1997)-type result.

5 Conclusion

This paper constructed a model of matching with heterogeneous workers. Unemployed work-

ers randomly meet with each other, and decide whether or not to accept the match. After

matching, one specializes in one task, and the other specializes in the other task, following

their comparative advantage. Under the matching friction, the resulting pattern of special-

ization in the economy is not necessarily efficient.

When the underlying talent distribution is a “flipped-L” shape, the Nash equilibrium

exhibits an endogenous “group” structure—some workers accept a match with anyone, and

some workers accept a match with anyone except for those from their own group. It was shown

that a more generous unemployment insurance system may increase aggregate output. This

is due to a better allocation of talent. Unemployment insurance induces people to specialize

in what they are good at.
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Appendix

A Equivalence to the Model with Tax

Suppose that the unemployment insurance is financed by a lump-sum tax τ on all workers.

Then, (1) and (2) become:

rUi = h− τ + α

∫

Fi

max〈Vi(xj , yj)− Ui, 0〉dF (xj , yj) (10)

and

rVi(xj , yj) = max〈xi + yj , xj + yi〉 − τ − δ[Vi(xj , yj)− Ui]. (11)

Let us define Ũi ≡ Ui + τ/r and Ṽi(xj , yj) ≡ Vi(xj , yj) + τ/r. Then, (10) and (11) can be

rewritten as

rŨi = h + α

∫

Fi

max〈Ṽi(xj , yj)− Ũi, 0〉dF (xj , yj)

and

rṼi(xj , yj) = max〈xi + yj , xj + yi〉 − δ[Ṽi(xj , yj)− Ũi],

which are equivalent to (1) and (2).

If we assume that the government has to balance the budget every period, τ = hu has to

hold. The equilibrium value of τ is determined by the equilibrium value of u.

Note that if the tax is levied only on the employed workers, this equivalence does not hold.

Moreover, this type of tax can become a source of multiple equilibria. When the workers

expect that the tax will be high, the workers become more selective and the unemployment

rate becomes high. High unemployment rate means that the tax is high in equilibrium, and

the expectation is self-fulfilled.

B Proofs of Theorems and Propositions in Section 3

Proof of Proposition 1:

Suppose, by contradiction, there are matches between i with xi > yi and j with xj > yj .

Since the distribution of match is symmetric, this implies that there are matches between k
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with xk < yk and l with xl < yl. Without loss of generality, assume that i and k specialize in

x and j and l specialize in y. Then the total output of these two matches is xi + yj +xk + yl.

Now, instead match i with k and j with l, and let i and j specialize in x and k and l specialize

in y. Then the total output becomes xi + yk + xj + yl. Since xj > yj and yk > xk, this is

strictly larger than before. Contradiction. 2

Proof of Theorem 1:

We prove the theorem for Y -type workers. The argument for X-type workers are sym-

metric.

Existence:

Step 1: Find a candidate for x̂

Pick a value of x̄ ∈ (0, 1). Assume the following behavior for everyone (denote the worker

j) except for worker i.

• If xj ∈ [x̄, 1], Aj = [0, 1].

• If xj ∈ [0, x̄), Aj = [x̄, 1].

If we can find an x̄ that makes the worker i to behave in the same way, we call it x̂ and we

are done.

So, let’s look at i’s behavior. Note that since the other workers behave as above, the

feasible set for i is as following.

• If xi ∈ [x̄, 1], Fi = [0, 1].

• If xi ∈ [0, x̄), Fi = [x̄, 1].

First, given x̄, we look for a worker whose xi = xi. Call this value x̃i. Does x̃i always exist?

For such a worker, Vi(x)−Ui looks as in Figure 20. Therefore, from (5), rUi = x̃i + 1 has to

hold. From (3), x̃i is a solution to

xi + 1 = h +
α

r + δ

∫

Mi

(xj − xi)dF (xj). (12)
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The left-hand-side of (12) is a linear and continuous function of xi. It can easily be seen

that the right-hand-side is a monotonically decreasing and continuous function of xi. (Note

that Mi is a function of xi. Specifically, Mi = Fi ∩ [xi, 1] = [max{x̄, xi}, 1]. See Figures 21

and 22.) The right-hand-side takes the value of g(x̄) ≡ h + α
∫
[x̄,1] xjdF (xj)/(r + δ) when

xi = 0. It takes the value of h when xi = 1: this can be seen by moving x̃i to 1 in Figure 20

— inside the integral will converge to zero for all xj . g(x̄) is monotonically decreasing in x̄

and approaches to h+α/2(r + δ) as x̄ approaches to 1 from below (note that there is a mass

of 1/2 at xj = 1). Therefore, when Assumption 1 is satisfied, there always exists a unique

x̃i ∈ (0, 1) that satisfies (12) (See Figure 23).

Moreover, as we change x̄, the right-hand-side of (12) shifts down continuously. Therefore,

x̃i is a continuous and decreasing function of x̄. From the Brouwer Fixed-Point Theorem

(Stokey and Lucas with Prescott [1989] Theorem 17.3), there exists a x̄ (in fact, this is the

unique fixed point) that satisfies x̄ = x̃i (See Figure 24). We claim that this fixed point is

the x̂ that we are looking for.
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Step 2: Verify the Nash equilibrium

To see this, consider i’s behavior when x̄ is given as this value (we call this x̂ hereafter).

Note that when xi = x̂, the worker is indifferent among any xi ∈ [0, x̂].

Case 1 xi > x̂:

To show that xi = 0, it suffices to prove a contradiction for xi ≥ xi. (From Figure 25,

it can be seen that xi cannot belong to (0, xi) since Vi(x) − Ui cannot cross zero at a

point belonging to (0, xi).) So, suppose that xi ≥ xi (the lower graph in Figure 25.)

Then, the right-hand-side of (3) is smaller for this xi compared to the case when xi = x̂

(the middle graph in Figure 25). This contradicts to the fact that Ui is increasing in

xi.

Case 2 xi < x̂:

To show that xi = x̂, we have to rule out the three cases: xi = 0, xi ∈ [xi, x̂), and

xi > x̂. (From Figure 26, it can be seen that xi cannot belong to (0, xi) since Vi(x)−Ui

cannot cross zero at a point belonging to (0, xi).) Suppose that xi = 0. Then, the

right-hand-side of (3) is larger for this xi compared to the case when xi = x̂. This

contradicts to the fact that Ui is increasing in xi. Next suppose that xi ∈ [xi, x̂).
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Again, the right-hand-side of (3) is larger for this xi compared to the case when xi = x̂.

This contradicts to the fact that Ui is increasing in xi. Finally, suppose xi > x̂ (the

lower graph in Figure 26). Call the value of Ui when xi = x̂ as Û . Then, xi > x̂ implies

xi + 1− rUi

r + δ
<

xi − x̂

r + δ
.

(See the vertical axis of Figure 26.) Therefore, (x̂ + 1 − rUi)/(r + δ) < 0. Since

(x̂ + 1 − rÛ)/(r + δ) = 0, this implies Ui > Û . This contradicts to the fact that Ui is

increasing in xi.

We’ve shown the existence.

Uniqueness:

First, given an arbitrary F(xi), consider the determination of A(xi). Note that from

Figure 6, if there exists an xi and xj ≤ xi such that xj ∈ A(xi), A(xi) = [0, 1]. (Let x̂ be the

smallest xi that this happens.)

This in turn implies that F(xi) is identical above the 45-degree line. Note that for

xi < x̂, since A(xi) does not extend below xi, M(xi) ⊆ F(xi). In fact, using a similar

logic as Case 2 above, it is straightforward to prove that A(xi) = [x̂, 1] for xi < x̂. (First,
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use (x̂ + 1 − rÛ)/(r + δ) ≥ 0 instead of (x̂ + 1 − rÛ)/(r + δ) = 0 in Case 2 to prove that

A(xi) ⊇ [x̂, 1]. Since A(xi) does not extend below xi for xi < x̂ that is arbitrarily close to x̂

and A(xi) is identical for xi < x̂, A(xi) = [x̂, 1].)

This implies that F(xi) = [0, 1] for xi ≥ xi. Given this, from the same logic as Case 1

above, it is straightforward to prove that A(xi) = [0, 1] for xi ≥ x̂. (Therefore, M(xi) = [0, 1]

for xi ≥ xi.)

This implies that F(xi) = [x̂, 1] for xi < x̂. Since A(xi) = [x̂, 1] for xi < x̂, M(xi) = [x̂, 1]

for xi < x̂.

Above we established that the equilibrium, if exists, has to exhibit the “group” structure

described in the Theorem. Since the uniqueness of x̂ is shown in the existence proof, the

Nash equilibrium is unique. 2

Proof of Proposition 2:

Using the solution for m1, (6) can be reduced to a quadratic equation f(m2) = 0, where

f(m2) ≡
(α

2
+ δ

)
x̂m2

2 − (αx̂ + δ)m2 +
α

2
x̂ +

αδ

α + δ
(1− x̂). (13)

Since f(0) = αx̂/2 + αδ(1 − x̂)/(α + δ) > 0 and f(1) = −δ2(1 − x̂)/(α + δ) < 0, there is a

unique m2 ∈ [0, 1] that satisfy f(m2) = 0. 2

Proof of Proposition 3:

We will show that m2 < m1 by exhibiting f(m1) < 0 in (13). Using the fact that

m1 = α/(α + δ), f(m1) can be reduced to f(m1) = −αδ2x̂/2(α + δ)2 < 0. 2

Proof of Proposition 4:

Let

G(m2, x̂) ≡
(α

2
+ δ

)
x̂m2

2 − (αx̂ + δ)m2 +
α

2
x̂ +

αδ

α + δ
(1− x̂).
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Then,
∂G/∂m2 = 2 (α/2 + δ) x̂m2 − (αx̂ + δ)

= (α + δ)x̂m2 + δx̂m2 − αx̂− δ

< (α + δ)x̂m1 + δx̂m2 − αx̂− δ

= αx̂ + δx̂m2 − αx̂− δ

< 0

and

∂G/∂x̂ = (α/2 + δ) m2
2 − αm2 + α/2− αδ/(α + δ)

= [(αx̂ + δ)m2 − αx̂/2− αδ(1− x̂)/(α + δ)]/x̂− αm2 + α/2− αδ/(α + δ)
= δm2/x̂− αδ(1− x̂)/(α + δ)x̂− αδ/(α + δ)
= [(α + δ)δm2 − αδ(1− x̂)− αδx̂]/(α + δ)x̂
= [(α + δ)δm2 − αδ]/(α + δ)x̂
< [(α + δ)δm1 − αδ]/(α + δ)x̂
= 0.

From the Implicit Function Theorem, M ′
2(x̂) < 0. 2

Proof of Proposition 5:

Define

H(x̂) ≡ h +
α

r + δ

[
s2

2
(1− x̂)2 +

1
2
(1− x̂)

]
− x̂− 1.

The solution to the quadratic equation H(x̂) = 0 is the solution to (9). Under Assumption

1, H(0) > 0 and H(1)¡1. Therefore, there exists a unique x̂ ∈ (0, 1) that satisfy (9). 2

Proof of Theorem 2:

(Again, we look at only type Y workers.) Since the underlying talent distribution function

is continuous, the stationary talent distribution of the unemployed is also continuous (no mass

point). In Theorem 1, we established that for given distribution of the unemployed, there

exists a unique Nash equilibrium that can be characterized by x̂.

Given this Nash equilibrium, the distribution of unemployed is characterized by m2, which

is characterized by (6). Therefore, (6) determines the mapping from x̂ to m2. Proposition

2 ensures that m2 exists (and unique for given x̂), and Proposition 4 ensures that m2 is

decreasing in x̂. From (6), it is clear that m2 is continuous in x̂.

Given m2 (and therefore s2), (9) determines the value of x̂ in Nash equilibrium. Proposi-

tion 5 guarantees the existence and uniqueness of x̂ given m2. By some algebra, it is possible
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to show that x̂ is increasing in m2. From (8) and (9), it is clear that x̂ is continuous in m2.

Therefore, the combination (x̂,m2) that satisfies (6) and (9) always exists, and is unique.

This establishes the existence and uniqueness of the market equilibrium. 2

Proof of Proposition 6:

Clearly, the left-hand-side of (9) is increasing in x̂. First, we establish that the right-

hand-side of (9) is decreasing in x̂. Then, the equilibrium x̂ can be defined as the unique

crossing point of those two.

To establish that the right-hand-side of (9) is decreasing in x̂, it suffices to show that

s2(1− x̂) is decreasing in x̂. To see this, rewrite (6) as

α

(
1− 1

2
u2x̂

u1(1− x̂) + u2x̂

)
= δ

m2

1−m2
.

From Proposition 4, the right-hand-side is decreasing in x̂. Therefore, in the left-hand-side,

u2x̂/[u1(1− x̂) + u2x̂] has to be increasing in x̂. Since

s2(1− x̂) =
u1(1− x̂)

u1(1− x̂) + u2x̂
= 1− u2x̂

u1(1− x̂) + u2x̂
,

s2(1− x̂) is decreasing in x̂.

Then, the increase in h will shift up the left-hand-side of (9), and increase x̂. 2
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